Vol. 36, issue 08, article # 7

Skorokhodov A. V., Pustovalov K. N., Kharyutkina E. V., Astafurov V. G. Cloud-base height retrieval from MODIS satellite data based on self-organizing neural networks. // Optika Atmosfery i Okeana. 2023. V. 36. No. 08. P. 670–680. DOI: 10.15372/AOO20230807 [in Russian].
Copy the reference to clipboard


An algorithm for retrieval of cloud-base height (CBH) from passive remote sensing data based on artificial intelligence methods is presented. Determining the CBH is considered as a special case of the classification problem. The algorithm is trained by comparing the results of active measurements of the CBH for single-layer clouds by the ground-based ceilometers (ASOS network), CALIOP lidar (CALIPSO satellite), and CPR radar (CloudSat satellite) with the cloud parameters obtained from the MODIS spectroradiometer (Aqua satellite). The results of estimating the capabilities of active tools to determine the CBH depending on optical thickness of clouds are presented. The CBH retrieval algorithm is based on the use of three independent Kohonen neural networks trained on the data of the above devices. The results of determining the CBH for single-layer clouds by the developed classifier based on daytime MODIS images of the territory of Western Siberia obtained in summer are discussed. It is established that the algorithm generally underestimates the CBH. The average bias of the resulting scores from the ASOS/CALIOP/CPR reference data is -0.2 km at a standard deviation of 1.2 km.


atmosphere cloud-base height, optical thickness, neural network, image processing, satellite data



1. Mecikalski J.R., Feltz W.F., Murray J.J. Johnson D.B., Bedka K.M., Bedka S.T., Wimmers A.J., Pavlonis M., Berendes T.A., Haggerty J., Minnis P., Bernstein B., Williams E. Aviation applications for satellite-based observations of cloud properties, convection initiation, in-flight icing, turbulence, and volcanic ash // Bull. Am. Meteor. Soc. 2007. V. 88. P. 1589–1607. DOI: 10.1175/BAMS-88-10-1589.
2. Gebremariam S., Li S., Weldegaber M. Observed correlation between aerosol and cloud base height for low clouds at Baltimore and New York, United States // Atmosphere. 2018. V. 9, N 4. P. 143. DOI: 10.3390/atmos9040143.
3. Zheng Y., Rosenfeld D., Li Z. The relationships between cloud top radiative cooling rates, surface latent heat fluxes, and cloud-base heights in marine stratocumulus // J. Geophys. Res.: Atmos. 2018. V. 123. P. 11678–11690. DOI: 10.1029/2018JD028579.
4. Kkhyong N.V. Otsenka vliyaniya meteobrazovaniya na rasprostranenie radiovoln v X-diapazone // Trudy MFTI. 2020. V. 12, N 3. P. 94–103. DOI: 10.53815/20726759_2020_12_3_94.
5. Tolmacheva N.I., Kryuchkova A.D. Metody i sredstva meteorologicheskih izmerenii: ucheb. posobie. Perm': Izd-vo PGNIU, 2013. 253 p.
6. Boreisho A.S., Kim A.A., Konyaev M.A., Luginya V.S., Morozov A.V., Orlov A.E. Sovremennye lidarnye sredstva distantsionnogo zondirovaniya atmosfery // Fotonika. 2019. V. 13, N 7. P. 648–657. DOI: 10.22184/1992-7296.
7. Rukovodstvo po meteorologicheskim priboram i metodam nablyudenii. ZHeneva, SHveitsariya: VMO, 2017. 1400 p.
8. Wilheit T.T., Hutchison K.D. Retrieval of cloud base heights from passive microwave and cloud top temperature data // IEEE Trans. Geosci. Remote Sens. 2000. V. 38. P. 1253–1259. DOI: 10.1109/36.843017.
9. Forsythe J.M., Vonder Haar T.H., Reinke D.L. Cloud base height estimates using a combination of meteorological satellite imagery and surface reports // J. Appl. Meteor. 2000. V. 39. P. 2336–2347. DOI: 10.1175/ 1520-0450(2000)039<2336:CBHEUA>2.0.CO;2.
10. Hutchison K.D. The retrieval of cloud base heights from MODIS and three-dimensional cloud fields from NASA’s EOS Aqua mission // Int. J. Remote Sens. 2002. V. 23. P. 5249–5265. DOI: 10.1080/01431160110117391.
11. Stubenrauch C.J., Cros S., Guignard A., Lamquin N. A 6-year global cloud climatology from the Atmospheric InfraRed Sounder AIRS and a statistical analysis in synergy with CALIPSO and CloudSat // Atmos. Chem. Phys. 2010. V. 10. P. 7197–7214. DOI: 10.5194/acp-10-7197-2010.
12. Koffi B., Schulz M., Bréon F.-M., Griesfeller J., Winker D.M.M., Balkanski Y., Bauer S., Berntsen T., Chin M., Collins W.D., Dentener F., Diehl T., Easter R.C., Ghan S.J., Ginoux P.A., Gong S., Horowitz L.W., Iversen T., Kirkevag A., Koch D.M., Krol M., Myhre G., Stier P., Takemura T. Application of the CALIOP layer product to evaluate the vertical distribution of aerosols estimated by global models: AeroCom phase I results // J. Geophys. Res. 2012. V. 117. D. 10201. DOI: 10.1029/2011JD016858.
13. Oreopoulos L., Cho N., Lee D. New insights about cloud vertical structure from CloudSat and CALIPSO observations // J. Geophys. Res. Atmos. 2017. V. 122. P. 9280–9300. DOI: 10.1002/2017JD026629.
14. Tanelli S., Durden S.L., Eastwood I.M., Pak K.S., Reinke D.G., Partain Ph., Haynes J.M., Marchand R.T. CloudSat’s Cloud Profiling Radar after two years in orbit: Performance, calibration, and processing // IEEE Trans. Geosci. Remote Sens. 2008. V. 46, N 11. P. 3560–3573. DOI: 10.1109/TGRS.2008. 2002030.
15. Winker D.M., Vaughan M.A., Omar A., Hu Y., Powell K.A. Overview of the CALIPSO mission and CALIOP data processing algorithms // J. Atmos. Ocean. Technol. 2009. V. 26. P. 2310–2323. DOI: 10.1175/2009JTECHA1281.1.
16. Masunaga H. Satellite Measurements of Clouds and Precipitation: Theoretical Basis. Singapore: Springer Verlag, 2022. 297 p.
17. Miller S.D., Forsythe J.M., Partain P.T., Haynes J.M., Bankert R.L., Sengupta M., Mitrescu C., Hawkins J.D., Vonder Haar T.H. Estimating three-dimensional cloud structure via statistically blended satellite observations // J. Appl. Meteorol. Climatol. 2014. V. 53. P. 437–455. DOI: 10.1175/JAMC-D-13-070.1.
18. Noh Y.-J., Forsythe J.M., Miller S.D., Seaman C.J., Li Y., Heidinger A.K., Lindsey D.T., Roger M.A., Partain P.T. Cloud-base height estimation from VIIRS. Part II: A statistical algorithm based on A-Train satellite data // J. Atmos. Ocean. 2017. V. 34. P. 585–598. DOI: 10.1175/JTECH-D-16-0110.1.
19. Minnis P., Sun-Mack S., Chen Ya., Chang F.-L., Yost C.R., Smith W.L., Jr., Heck P.W., Arduini R.F., Bedka S.T., Yi Yu., Hong G., Jin Z., Painemal D., Palikonda R., Scarino B.R., Spangenberg D.A., Smith R.A., Trepte Q.Z., Yang P., Xie Y. CERES MODIS cloud product retrievals for Edition 4 – Part I: Algorithm changes // IEEE Trans. Geosci. Remote Sens. 2021. V. 59. P. 2744–2780. DOI: 10.1109/TGRS.2020.3008866.
20. Barker H.W., Jerg M.P., Wehr T., Kato S., Donovan D.P., Hogan R.J. A 3D cloud-construction algorithm for the EarthCARE satellite mission // Q. J. R. Meteorol. Soc. 2011. V. 137. P. 1042–1058. DOI: 10.1002/qj.824.
21. Sun X.J., Li H.R., Barker H.W., Zhang R.W., Zhou Y.B., Liu L. Satellite-based estimation of cloud-base heights using constrained spectral radiance matching // Q. J. R. Meteorol. Soc. 2016. V. 142. P. 224–232. DOI: 10.1002/qj.2647.
22. Chen S., Cheng C., Zhang X., Su L., Tong B., Dong C., Wang F., Chen B., Chen W., Liu D. Construction of nighttime cloud layer height and classification of cloud types // Remote Sens. 2020. V. 12. P. 668. DOI: 10.3390/rs12040668.
23. Grossvenor D.P., Wood R. The effect of solar zenith angle on MODIS cloud optical and microphysical retrievals within marine liquid water clouds // Atmos. Chem. Phys. 2014. V. 14. P. 7291–7321. DOI: 10.5194/acp-14-7291-2014.
24. Minnis P., Sun-Mack S., Smith W.L.J., Hong G., Chen Y. Advances in neural network detection and retrieval of multilayer clouds for CERES using multispectral satellite data // Proc. SPIE. 2019. V. 11152. DOI: 10.1117/12.2532931.
25. Tan Z., Huo J., Ma S., Han D., Wang X., Hu S., Yan W. Estimating cloud base height from Himawari-8 based on a random forest algorithm // Int. J. Remote Sens. 2021. V. 42, N 7. P. 2485–2501. DOI: 10.1080/01431161.2020.1854891.
26. Noh Y.-J., Haynes J.M., Miller S.D., Seaman C.J., Heidinger A.K., Weinrich J., Kulie M.S., Niznik M., Daub B.J. A framework for satellite-based 3D cloud data: An overview of the VIIRS cloud base height retrieval and user engagement for aviation applications // Remote Sens. 2022. V. 14. P. 5524. DOI: 10.3390/rs14215524.
27. Miller S.D., Noh Y.-J., Forsythe J.F., Seaman C.J., Li Y., Heidinger A.K., Lindsey D.T. AWG Cloud Base Algorithm (ACBA). Silver Spring, MD, USA: NOAA NESDIS, 2019. 46 p.
28. Kod dlya operativnoi peredachi dannyh prizemnyh meteorologicheskih nablyudenii s seti stantsii Rosgidrometa (Kod KN-01 SYNOP). M.: Triada, 2013. 79 p.
29. Braun B.M., Sweetser T.H., Graham C., Bartsch J. CloudSat’s A-Train exit and the formation of the C-Train: An orbital dynamics perspective // IEEE Aerospace Conference Proceedings. 2019. P. 18759265. DOI: 10.1109/AERO.2019.8741958.
30. Eastman R., Warren S.G. Diurnal cycles of cumulus, cumulonimbus, stratus, stratocumulus, and fog from surface observations over land and ocean // J. Climate. 2013. V. 27. P. 2386–2404. DOI: 10.1175/JCLI-D-13-00352.1.
31. Mace G.G., Zhang Q. The CloudSat radar-lidar geometrical profile product (RL-GeoProf): Updates, improvements and selected results // J. Geophys. Res.: Atmos. 2014. V. 119. P. 9441–9462. DOI: 10.1002/2013JD021374.
32. NOAA. The Automated Surface Observing System: ASOS user’s guide. Washington D.C., USA: NOAA, 1998. 74 p.
33. Mülmenstädt J., Sourdeval O., Henderson D.S., LEcuyer T.S., Unglaub C., Jungandreas L., Böhm C., Russell L.M., Quaas J. Using CALIOP to estimate cloud-field base height and its uncertainty: The Cloud Base Altitude Spatial Extrapolator (CBASE) algorithm and dataset // Earth Syst. Sci. Data. 2018. V. 10. P. 2279–2293. DOI: 10.5194/essd-10-2279-2018.
34. Platnick S.K., Meyer G., King M.D., Wind G., Amarasinghe N., Marchant B., Arnold G.T., Zhang Z., Hubanks P.A., Holz R.E., Yang P., Ridgway W.L., Riedi J. The MODIS cloud optical and microphysical products: Collection 6 updates and examples from Terra and Aqua // IEEE Trans. Geosci. Remote Sens. 2017. V. 55. P. 502–525. DOI: 10.1109/TGRS.2016.2610522.
35. Haikin S. Neironnye seti: Polnyi kurs / per. s angl. N.N. Kussul', A.Yu. Shelestovoi. M.: Izd. dom Vil'yams, 2008. 1103 p.
36. Weisz E., Li J., Menzel W.P., Heidinger A.K., Kahn B.H., Liu C.-Y. Comparison of AIRS, MODIS, CloudSat and CALIPSO cloud top height retrievals // Geophys. Res. Lett. 2007. V. 34. DOI: 10.1029/2007GL030676.
37. Liu C.-Y., Chiu C.-H., Lin P.-H., Min M. Comparison of cloud-top property retrievals from Advanced Himawari Imager, MODIS, CloudSat/CPR, CALIPSO/CALIOP and radiosonde // J. Geophys. Res.: Atmos. 2020. V. 125. Р. e2020JD032683. DOI: 10.1029/2020JD032683.
38. Lu X., Mao F., Rosenfeld D., Zhu Y., Pan Z., Gong W. Satellite retrieval of cloud base height and geometric thickness of low-level cloud based on CALIPSO // Atmos. Chem. Phys. 2021. V. 21. P. 11979–12003. DOI: 10.5194/acp-21-11979-2021.
39. Osovskii S. Neironnye seti dlya obrabotki informatsii / per. s pol'skogo I.D. Rudinskogo. M.: Finansy i statistika, 2002. 344 p.
40. Mahover Z.M. Klimatologiya tropopauzy. L.: Gidrometeoizdat, 1983. 254 p.
41. Marchant B., Platnick S., Meyer K., Wind G. Evaluation of the MODIS Collection 6 mulitlayer cloud detection algorithm through comparisons with CloudSat cloud profiling radar and CALIPSO CALIOP products // Atmos. Meas. Technol. 2020. V. 13. P. 3263–3275. DOI: 10.5194/amt-13-3263-2020.
42. Mitchell D.L., Garnier A., Pelon J., Erfani E. CALIPSO (IIR–CALIOP) retrievals of cirrus cloud ice-particle concentrations // Atmos. Chem. Phys. 2018. V. 18. P. 17325–17354. DOI: 10.5194/acp-18-17325-2018.
43. Bewick V., Cheek L., Ball J. Statistics review 7: Correlation and regression // Crit Care. 2003. V. 7, N 6. P. 451–459. DOI: 10.1186/cc2401.
44. Chicco D., Warrens M.J., Jurman G. The coefficient of determination R-squared is more informative than SMAPE, MAE, MAPE, MSE, and RMSE in regression analysis evaluation // Peer. J. Comput. Sci. 2021. V. 7. Р. e623. DOI: 10.7717/peerj-cs.623.