Vol. 36, issue 08, article # 3

Samoilova S. V., Kokhanenko G. P., Balin Yu. S. The advantages of an additional Raman channel in multi-wavelength lidar within 355–1064 nm for retrieval of the aerosol microphysical characteristics. // Optika Atmosfery i Okeana. 2023. V. 36. No. 08. P. 631–641. DOI: 10.15372/AOO20230803 [in Russian].
Copy the reference to clipboard

Abstract:

In the present work, we have studied the potentials of an additional Raman channel in the IR region of spectrum for the determination of the aerosol microphysical parameters. A procedure is suggested for simultaneous retrieving the characteristics of a spherical particle, the complex refractivity index m = mreal + i × mimage and the bimodal size distribution function U(r), using laser sensing data. A possibility of a separate fraction-wise estimation of m + U(r) is studied for weakly absorbing particles for mimage ≤ 0.010, when mfine  mcoarse. The algorithms are tested for one mfine = 1.50 + i × 0.01 and nine mcoarse(mreal = 1.40, 1.50, and 1.60, mimage = 0.0001 and 0; mreal = 1.40, 1.50, and 1.60; mimage = 0.0001, 0.001, and 0.01). In order to take into account the influence of the contribution from the modal particles into the total concentration, 462 empirical models of U(r) are used.

Keywords:

aerosol, lidar, optical parameters, inverse problem, microphysical characteristics

Figures:

References:

1. Holben B.N., Eck T.F., Slutsker I., Tanré D., Buis J.P., Setzer A., Vermote E., Reagan J.A., Kaufman Y., Nakajima T., Lavenu F., Jankowiak I., Smirnov A. AERONET – a federated instrument network and data archive for aerosol characterization // Rem. Sens. Environ. 1998. V. 66. P. 1–16.
2. Dubovik O., King M.D. A flexible inversion algorithm for retrieval of aerosol optical properties from Sun and sky radiance measurements // J. Geophys. Res. 2000. V. 105. P. 20673–20696.
3. Dubovik O., Sinyuk A., Lapyonok T., Holben B.N., Mishchenko M., Yang P., Eck T.F., Volten H., Munoz O., Veihelmann B., van der Zande W.J., Leon J.-F., Sorikin M., Slutsker I. Application of spheroid moments to account for aerosol particle nonsphericity in remote sensing of desert dust // J. Geophys. Res. 2006. V. 111. P. D11208. DOI: 10.1029/2005D006619.
4. Dubovik O., Li Z., Mishchenko M.I., Tanré D., Karol Y., Bojkov B., Cairns B., Diner D.J., Espinosa W.R., Goloub P., Gu X., Hasekamp O., Hong J., Hou W., Knobelspiesse K.D., Landgraf J., Li L., Litvinov P., Liu Y., Lopatin A., Marbach T., Maring H., Martins V., Meijer Y., Milinevsky G., Mukai S., Parol F., Qiao Y., Remer L., Rietjens J., Sano I., Stammes P., Stamnes S., Sun X., Tabary P., Travis L.D., Waquet F., Xu F., Yan C., Yin D. Polarimetric remote sensing of atmospheric aerosols: Instruments, methodologies, results, and perspectives // J. Quant. Spectrosc. Radiat. Transfer. 2019. V. 224. P. 474–511. DOI: 10.1016/j.jqsrt.2018.11.024.
5. Espinosa W.R., Martins J.V., Remer L.A., Dubovik O., Lapyonok T., Fuertes D., Puthukkudy A., Orozco D., Ziemba L., Thornhill K.L., Levy R. Retrievals of aerosol size distribution, spherical fraction, and complex refractive index from airborne in situ angular light scattering and absorption measurements // J. Geophys. Res. Atmos. 2019. V. 124. P. 7997–8024. DOI: 10.1029/2018JD030009.
6. Li L., Dubovik O., Derimian Y., Schuster G.L., Lapyonok T., Litvinov P., Ducos F., Fuertes D., Chen C., Li Z., Lopatin A., Torres B., Che H. Retrievals of fine mode light-absorbing carbonaceous aerosols from POLDER/PARASOL observations over East and South Asia // Remote Sens. Environ. 2020. V. 247. P. 111913. DOI: 10.1016/j.rse.2020.111913.
7. Lopatin A., Dubovik O., Fuertes D., Stenchikov G., Lapyonok T., Veselovskii I., Wienhold F.G., Shevchenko I., Hu Q., Parajuli S. Synergy processing of diverse ground-based remote sensing and in situ data using the GRASP algorithm: Applications to radiometer, lidar and radiosonde observations // Atmos. Meas. Tech. 2021. V. 14. P. 2575–2614. DOI: 10.5194/amt-14-2575-2021.
8. Bösenberg J., Ansmann A., Baldasano J.M., Balis D., Böckmann C., Calpini B., Chaikovsky A., Flamant P., Hågård A., Mitev V., Papayannis A., Pelon J., Resendes D., Schneider J., Spinelli N., Trickl T., Vaughan G., Visconti G., Wiegner M. EARLINET: A European aerosol research lidar network // Advances in Laser Remote Sensing / A. Dabas, C. Loth, J. Pelon (eds.). Editions de L’Ecole Polytechnique, 2000. P. 155–158.
9. Murayama T., Sugimoto N., Uno I., Kinoshita K., Aoki K., Hagiwara N., Liu Z., Matsui I., Sakai T., Shibata T., Arao K., Sohn B.-J., Won J.-G., Yoon S.-C., Li T., Zhou J., Hu H., Abo M., Iokibe K., Koga R., Iwasaka Y. Ground-based network observation of Asian dust events of April 1998 in East Asia // J. Geophys. Res. 2001. V. 106. P. 18345–18359.
10. Welton E.J., Campbell J.R., Spinhirne J.D., Scott V.S. Global monitoring of clouds and aerosols using a network of micro-pulse lidar systems // Proc. SPIE. 2001. V. 4153. P. 151–158. URL: https://mplnet.gsfc.nasa.gov.
11. Chaikovsky A.P., Ivanov A.P., Balin Yu.S., Elnikov A.V., Tulinov G.F., Plusnin I.I., Bukin O.A., Chen B.B. CIS-LINET – LIdar NETwork for monitoring aerosol and ozone in CIS regions // Reviewed and Revised Papers Presented at the 23d ILRC / C. Nagasava, N. Sugimoto (eds.). Nara, Japan, 2006. P. 671–672.
12. Wandinger U., Freudenthaler V., Baars H., Amodeo A., Engelmann R., Mattis I., Groß S., Pappalardo G., Giunta A., D’Amico G., Chaikovsky A., Osipenko F., Slesar A., Nicolae D., Belegante L., Talianu C., Serikov I, Linné H., Jansen F., Apituley A., Wilson K.M., de Graaf M., Trickl T., Giehl H., Adam M., Comerón A., Muñoz-Porcar C., Rocadenbosch F., Sicard M., Tomás S., Lange D., Kumar D., Pujadas M., Molero F., Fernández A.J., Alados-Arboledas L., Bravo-Aranda J.A., Navas-Guzmán F., Guerrero-Rascado J.L., Granados-Muñoz M.J., Preißler J., Wagner F., Gausa M., Grigorov I., Stoyanov D., Iarlori M., Rizi V., Spinelli N., Boselli A., Wang X., Lo Feudo T., Perrone M.R., de Tomasi F., Burlizzi P. EARLINET instrumentation campaigns: Overview on strategy and results // Atmos. Meas. Tech. 2016. V. 9. P. 1001–1023. DOI: 10.5194/amt-9-1001-2016.
13. Burton S.P., Chemyakin E., Liu X., Knobelspiesse K., Stamnes S., Sawamura P., Moore R.H., Hostetler Ch.A., Ferrare R.A. Information content and sensitivity of the (3b + 2s) lidar measurement system for aerosol microphysical retrievals // Atmos. Meas. Tech. 2016. V. 9. P. 5555–5574. DOI: 10.5194/amt-9-5555-2016.
14. Tesche M., Kolgotin A., Haarig M., Burton S.P., Ferrare R.A., Hostetler C.A., Müller D. 3 + 2 + X: What is the most useful depolarization input for retrieving microphysical properties of non-spherical particles from lidar measurements using the spheroid model of Dubovik et al. (2006)? // Atmos. Meas. Tech. 2019. V. 12. P. 4421–4437. DOI: 10.5194/amt-12-4421-2019.
15. Veselovskii I., Whiteman D.N., Korenskiy M., Suvorina A., Pérez-Ramírez D. Use of rotational Raman measurements in multiwavelength aerosol lidar for evaluation of particle backscattering and extinction // Atmos. Meas. Tech. 2015. V. 8. P. 4111–4122. DOI: 10.5194/ amt-8-4111-2015.
16. Haarig M., Engelmann R., Ansmann A., Veselovskii I., Whiteman D.N., Althausen D. 1064 nm Raman lidar for extinction and lidar ratio profiling: Cirrus case study // Atmos. Meas. Tech. 2016. V. 9. P. 4269–4278. DOI: 10.5194/amt-9-4269-2016.
17. Müller D., Wandinger U., Ansmann A. Microphysical particle parameters from extinction and backscatter lidar data by inversion with regularization: Theory // Appl. Opt. 1999. V. 38. P. 2346–2357.
18. Böckmann C. Hybrid regularization method for the ill-posed inversion of multiwavelength lidar data in the retrieval of aerosol size distribution // Appl. Opt. 2001. V. 40. P. 1329–1342.
19. Veselovskii I., Kolgotin A., Griaznov V., Müller D., Franke K., Whiteman D.M. Inversion of multiwavelength Raman lidar data for retrieval of bimodal aerosol size distribution // Appl. Opt. 2004. V. 43. P. 1180–1195.
20. Müller D., Böckmann C., Kolgotin A., Schneidenbach L., Chemyakin E., Rosemann J., Znak P., Romanov A. Microphysical particle properties derived from inversion algorithm developed in the framework of EARLINET // Atmos. Meas. Tech. 2016. V. 9. P. 5007–5035. DOI: 10.5194/amt-9-5007-2016.
21. Sawamura P., Moore R.H., Burton S.P., Chemyakin E., Müller D., Kolgotin A., Ferrare R.A., Hostetler Ch.A., Ziemba L.D., Beyersdorf A.J., Anderson B.E. HSRL-2 aerosol optical measurements and microphysical retrievals vs. airborne in situ measurements during DISCOVER-AQ 2013: An intercomparison study // Atmos. Chem. Phys. 2017. V. 17. P. 7229–7243. DOI: 10.5194/acp-17-7229-2017.
22. Müller D., Chemyakin E., Kolgotin A., Ferrare R.A., Hostetler C.A., Romanov A. Automated, unsupervised inversion of multiwavelength lidar data with TiARA: Assessment of retrieval performance of microphysical parameters using simulated data // Appl. Opt. 2019. V. 58. P. 4981–5008. DOI: 10.1364/AO.58.004981.
23. Pérez-Ramírez D., Whiteman D.N., Veselovskii I., Korenskiy M., Colarco P., Da Silva A. Optimized profile retrievals of aerosol microphysical properties from simulated spaceborne multiwavelength lidar // J. Quant. Spectrosc. Radiat. Transfer. 2020. V. 246. P. 106932. DOI: 10.1016/j.jqsrt.2020.106932.
24. Veselovskii I., Hu Q., Goloub P., Podvin T., Korenskiy M., Derimian Y., Legrand M., Castellanos P. Variability in lidar-derived particle properties over West Africa due to changes in absorption: Towards an understanding // Atmos. Chem. Phys. 2020. V. 20. P. 6563–6581. DOI: 10.5194/acp-20-6563-2020.
25. Samoilova S.V., Penner I.E., Kokhanenko G.P., Balin Yu.S. Simultaneous reconstruction of two microphysical aerosol characteristics from the lidar data // J. Quant. Spectrosc. Radiat. Transfer. 2019. V. 222–223. P. 35–44. DOI: 10.1016/j.jqsrt.2018.10.014.
26. Samoilova S.V., Penner I.E., Balin Yu.S. Separate retrieval of microphysical characteristics in aerosol fraction // J. Quant. Spectrosc. Radiat. Transfer. 2022. V. 285. P. 108168-(1–14). DOI: 10.1016/j.jqsrt.2022.108168.
27. Haarig M., Ansmann A., Baars H., Jimenez C., Veselovskii I., Engelmann R., Althausen D. Depolarization and lidar ratios at 355, 532, and 1064 nm and microphysical properties of aged tropospheric and stratospheric Canadian wildfire smoke // Atmos. Chem. Phys. 2018. V. 18. P. 11847–11861. DOI: 10.5194/acp-18-11847-2018.
28. McLean W.G.K., Fu G., Burton S.P., Hasekamp O.P. Retrieval of aerosol microphysical properties from atmospheric lidar sounding: An investigation using synthetic measurements and data from the ACEPOL campaign // Atmos. Meas. Tech. 2021. V. 14. P. 4755–4771. DOI: 10.5194/amt-14-4755-2021.
29. Zuev V.E., Naats I.E. Obratnye zadachi lazernogo zondirovaniya atmosfery. Novosibirsk: Nauka, 1983. 240 p.
30. Bohren F.C., Huffman D.R. Absorption and Scattering of Light by Small Particles. New York: John Wiley & Sons Inc., 1983. 530 p.
31. Turchin V.F., Kozlov V.P., Malkevich M.S. Ispol'zovanie metodov matematicheskoi statistiki dlya resheniya nekorrektnyh zadach // Uspekhi fiz. nauk. 1970. V. 102, iss. 3. P. 345–386.
32. Василенко Г.И. Теория восстановления сигналов. М.: Сов. радио, 1979. 272 с.
33. Samoilova S.V., Sviridenkov M.A., Penner I.E. Retrieval of the particle size distribution function from the data of lidar sensing under the assumption of known refractive index // Appl. Opt. 2016. V. 55. P. 8022–8029. DOI: 10.1364/AO.55.008022.
34. Samoilova S.V. Sovmestnoe vosstanovlenie kompleksnogo pokazatelya prelomleniya i funktsii raspredeleniya chastits po razmeram po lidarnym izmereniyam: testirovanie razrabotannyh algoritmov // Optika atmosf. i okeana 2019. V. 32, N 7. P. 525–538; Samoilova S.V. Simultaneous reconstruction of the complex refractive index and the particle size distribution function from lidar measurements: Testing the developed algorithms // Atmos. Ocean. Opt. 2019. V. 32, N 6. P. 628–642.Samoilova S.V., Sviridenkov M.A., Penner I.E. Retrieval of the particle size distribution function from the data of lidar sensing under the assumption of known refractive index // Appl. Opt. 2016. V. 55. P. 8022–8029. DOI: 10.1364/AO.55.008022.
35. Tihonov A.N., Arsenin V.Ya. Metody resheniya nekorrektnyh zadach. M.: Nauka, 1986. 285 p.