Vol. 36, issue 08, article # 2

Falits A. V., Kuskov V. V., Banakh V. A., Gerasimova L. O., Tsvyk R. Sh., Shesternin A. N. Deformation and wander of vortex beams in artificial convective turbulence. // Optika Atmosfery i Okeana. 2023. V. 36. No. 08. P. 619–630. DOI: 10.15372/AOO20230802 [in Russian].
Copy the reference to clipboard


The results of experiments on the propagation of vortex optical beams in an artificial convective turbulent medium along a path 12 m long are presented. An artificial turbulent medium is created at a laboratory bench, where laser beams are generated with different values of the topological charge of the orbital angular momentum of the vortex optical field. The characteristics of the path and the parameters of the propagating radiation in the experiment correspond to the propagation conditions, which can be described in terms of geometric optics. It has been established that during the propagation of an optical beam, in the near diffraction zone, as the optical turbulence increases, the instantaneous distributions of the intensity of vortex beams become speckled, the original ring structure of the beam is distorted and disappears. In the averaged intensity distributions, the ring structure is gradually blurring with strengthening the refractive turbulence and becomes close to that of a Gaussian beam with the intensity maximum at the center. The random wandering of vortex beams, whose initial transverse size increases with the topological charge, and beams, whose initial transverse size remains unchanged with a change of the topological charge, is compared. It is shown that the amplitude of random displacements of a vortex beam energy centroid is independent of the topological charge.


vortex beam, turbulence, beam wander, convection, laboratory experiment, digital holography



1. Yao A., Padgett M. Orbital angular momentum: Origins, behavior, and applications // Adv. Opt. Photon. 2011. V. 3. P. 161–204. DOI: 10.1364/OL.26.000405.
2. Padgett M. Orbital angular momentum 25 years on [Invited] // Opt. Express. 2017. V. 25. P. 11265–11274. DOI: 10.1364/OE.25.011265.
3. Shen Y., Wang X., Xie Z., Min C., Fu X., Liu Q., Gong M., Yuan X. Optical vortices 30 years on: OAM manipulation from topological charge to multiple singularities // Light Sci. Appl. 2019. N 8. P. 90. DOI: 10.1038/s41377-019-0194-2.
4. Wang J., Yang J., Fazal I.M., Ahmed N., Yan Y., Huang H., Ren Y., Yue Y., Dolinar S., Tur M., Willner A.E. Terabit free-space data transmission employing orbital angular momentum multiplexing // Nature Photon. 2012. N 6. P. 488–496. DOI: 10.1038/nphoton.2012.138.
5. Lei T., Zhang M., Li Y., Jia P., Liu G.N., Xu X., Li Z., Min C., Lin J., Yu C., Niu H., Yuan X. Massive individual orbital angular momentum channels for multiplexing enabled by Dammann gratings // Light Sci Appl. 2015. V. 4. P. e257. DOI: 10.1038/lsa.2015.30.
6. Xie G., Li L., Ren Y., Huang H., Yan Y., Ahmed N., Zhao Z., Lavery M.P., Ashrafi N., Ashrafi S., Bock R., Tur M., Molisch A.F., Willner A.E. Performance metrics and design considerations for a free-space optical orbital-angular-momentum – multiplexed communication link // Optica. 2015. V. 2, N 4. P. 357–365.
7. Ren Y.X., et al. Atmospheric turbulence effects on the performance of a free space optical link employing orbital angular momentum multiplexing // Opt. Lett. 2013. V. 38, N 20. P. 4062–4065.
8. Chen C., Yang H. Characterizing the statistical distribution for transmission coefficient of turbulence optical orbital-angular-momentum channels // Opt. Express. 2019. V. 27, N 20. P. 28968–28982.
9. Ndagano B., Mphuthi N., Milione G., Forbes A. Comparing mode-crosstalk and mode-dependent loss of laterally displaced orbital angular momentum and Hermite–Gaussian modes for free-space optical communication // Opt. Lett. 2017. V. 42, N 20. P. 4175–4178.
10. Ren Y., Wang Z., Liao P., Li L., Xie G., Huang H., Zhao Z., Yan Y., Ahmed N., Willner A., Lavery M.P.J., Ashrafi N., Ashrafi S., Bock R., Tur M., Djordjevic I.B., Neifeld M.A., Willner A.E. Experimental characterization of a 400 Gbit/s orbital angular momentum multiplexed free-space optical link over 120-meters // Opt. Lett. 2016. V. 41, N 3. P. 622–625.
11. Ren Y., Xie G., Huang H., Bao C., Yan Y., Ahmed N., Lavery M., Erkmen B., Dolinar S., Tur M., Neifeld M., Padgett M., Boyd R., Shapiro J., Willner A. Adaptive optics compensation of multiple orbital angular momentum beams propagating through emulated atmospheric turbulence // Opt. Lett. 2014. V. 39, N 10. P. 2845–2848.
12. Aksenov V.P., Pogutsa Ch.E. Vliyanie opticheskogo vikhrya na sluchajnye smeshcheniya lagerr-gaussova puchka, rasprostranyayushchegosya v turbulentnoj srede // Optika atmosf. i okeana. 2012. V. 25, N 7. P. 561–565; Aksenov V.P., Pogutsa Ch.E. The effect of optical vortex on random Laguerre–Gauss shifts of a laser beam propagating in a turbulent atmosphere // Atmos. Ocean. Opt. 2013. V. 26, N 1. P. 13–17.
13. Aksenov V.P., Kolosov V.V., Pogutsa Ch.E. The influence of the vortex phase on the random wandering of a Laguerre–Gaussian beam propagating in a turbulent atmosphere: A numerical experiment // IOP Publish. Ltd. J. Opt. 2013. V. 15, N 4. P. 044007. DOI: 10.1088/2040-8978/15/4/044007.
14. Aksenov V.P., Kolosov V.V. Pogutsa Ch.E. Random wandering of laser beams with orbital angular momentum during propagation through atmospheric turbulence // Appl. Opt. 2014. V. 53. P. 3607–3614.
15. Lukin I.P. Ustojchivost' kogerentnykh vikhrevykh besselevykh puchkov pri rasprostranenii v turbulentnoj atmosfere // Optika atmosf. i okeana. 2014. V. 27, N 5. P. 367–374.
16. Yuan Y, Lei T., Li Z., Li Y., Gao S., Xie Z., Yuan X. Beam wander relieved orbital angular momentum communication in turbulent atmosphere using Bessel beams // Sci. Rep. 2017. V. 7, N 1. P. 42276.
17. Cheng M., Guo L., Li J., Yan X., Sun R., You Y. Effects of asymmetry atmospheric eddies on spreading and wander of Bessel–Gaussian beams in anisotropic turbulence // IEEE Photon. 2018. V. 10, N 4. Р. 6100510.
18. Fu S., Gao C. Influences of atmospheric turbulence effects on the orbital angular momentum spectra of vortex beams // Photon. Res. 2016. V. 4, N 5. P. B1–B4.
19. Wang F., Cai Y., Eyyuboğlu H.T., Baykal Y. Twist phase-induced reduction in scintillation of a partially coherent beam in turbulent atmosphere // Opt. Lett. 2012. V. 37, N 2. P. 184–186.
20. Saito A., Tanabe A., Kurihara M., Hashimoto N., Oga­wa K. Propagation properties of quantized Laguerre–Gaussian beams in atmospheric turbulence // Free-Space Laser Communication and Atmospheric Propagation XXVIII. 2016. V. 9739. P. 973914.
21. Yang Q., Wang T., Chen J., Yao H., Jiang Z., Sun Z., Yu C., Lin P., Sun H., Zhang F., Jiang H. Transmission characters of wide-spectrum OAM beam in tunable atmospheric turbulence // Opt. Commun. 2021. V. 496. Р. 127078.
22. Panchal P., Naik D.N., Narayanamurthy C.S. Insensitivity of higher order topologically charged Laguerre–Gaussian beamsto dynamic turbulence impact // Opt. Commun. 2021. V. 495. P. 127023.
23. Banakh V.A., Falits A.V. Ushirenie lagerrova puchka v turbulentnoj atmosfere // Opt. i spektroskop. 2014. V. 117, N 6. P. 969–975. DOI: 10.7868/S0030403414120022.
24. Falits A.V. Bluzhdanie i fluktuatsii intensivnosti fokusirovannogo Lagerra–Gaussova puchka v turbulentnoj atmosfere // Optika atmosf. i okeana. 2015. Т. 28, № 9. С. 763–771.
25. Banakh V.A., Gerasimova L.O. Strong scintillations of pulsed Laguerrian beams in a turbulent atmosphere // Opt. Express. 2016. V. 24, N 17. P. 19264–19277.
26. Brown B., Lohmann A. Computer-generated binary holograms // IBM J. Res. Dev. 1969. V. 13. P. 160–168.
27. Lee W.-H. Binary synthetic holograms // Appl. Opt. 1974. V. 13. P. 1677–1682.
28. Lee W.-H. Binary computer-generated holograms // Appl. Opt. 1979. V. 18, N 21. P. 3661–3669.
29. Arlt J., Dholakia K., Allen L., Padgett M.J. The production of multiringed Laguerre–Gaussian modes by computer-generated holograms // J. Modern Opt. V. 45, N 6. P. 1231–1237. DOI: 10.1080/09500349808230913.
30. Metody komp'yuternoj optiki / pod red. V.A. Sojfera. M.: Fizmalit, 2003. 688 p.
31. Anzuola E., Belmonte A. Generation of atmospheric wavefronts using binary micromirror arrays // Appl. Opt. 2016. V. 55, N 11. P. 3039–3044.
32. Bekshaev A.Y., Karamoch A.I. Spatial characteristics of vortex light beams produced by diffraction gratings with embedded phase singularity // Opt. Commun. 2008. V. 281, N 6. P. 1366–1374.
33. Bekshaev A., Mikhaylovskaya L., Patil S., Kumar V., Singh R.P. Optical-vortex diagnostics via Fraunhofer slit diffraction with controllable wavefront curvature // J. Opt. Soc. Am. A. 2020. V. 37, N 5. P. 780.
34. Mironov V.L. Rasprostranenie lazernogo puchka v turbulentnoj atmosfere. Novosibirsk: Nauka, 1981. 248 p.
35. Zuev V.E., Banakh V.A., Pokasov V.V. Optika turbulentnoj atmosfery. L.: Gidrometeoizdat, 1988. 270 p.
36. Klyatskin V.I., Kon A.I. O smeshcheniyakh prostranstvenno-ogranichennykh svetovykh puchkov v turbulentnoj srede v priblizhenii markovskogo sluchajnogo protsessa // Izv. vuzov. Radiofizika. 1972. V. 15, N 9. P. 1381–1388.