Vol. 36, issue 07, article # 1

Ovsyannikov R. I., Tretyakov M. Yu., Koshelev M. A., Galanina T. A. On the uncertainty of the calculated intensities of the water vapor lines in the sub-THz frequency range. // Optika Atmosfery i Okeana. 2023. V. 36. No. 07. P. 523–533. DOI: 10.15372/AOO20230701 [in Russian].
Copy the reference to clipboard


The comparative analysis of data available from open sources on the water spectral lines intensities in the frequency range from 0 to 1.75 THz has been carried out. The calculations by the method of effective Hamiltonians and the variational method, as well as experimental data were taken into account. It has been established that the intensity uncertainty is less than 2% for lines in the ground vibrational state with an intensity of more than 10-27 cm/mol. and is about 5–10% for weaker lines. For strong (more than 10-26 cm/mol.) lines in the v2 state, the uncertainty ranges from 2 to 5% and increases to 5–10% for weak lines. For all lines in the 2v2, v1, and v3 states, the uncertainty is no more than 5–10%. The presented data show that most of the considered lines can be assigned a higher (by 1–2 steps according to the classification adopted in HITRAN) category of intensity accuracy.


line intensity, water molecule, subTHz, atmospheric absorption


1. Cimini D., Rosenkranz P.W., Tretyakov M.Yu., Koshelev M.A., Romano F. Uncertainty of atmospheric microwave absorption model: Impact on ground-based radiometer simulations and retrievals // Atmos. Chem. Phys. 2018. V. 18. P. 15231–15259.
2. Koroleva A.O., Kassi S., Campargue A. The water vapor self-continuum absorption at room temperature in the 1.25 mm window // J. Quant. Spectrosc. Radiat. Transfer. 2022. V. 286. P. 108206.
3. Mlawer E.J., Payne V.H., Moncet J.L., Delamere J.S., Alvarado M.J., Tobin D.C. Development and recent evaluation of the MT CKD model of continuum absorption // Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2012. V. 370. P. 2520–2556.
4. Continuum model. URL: http://rtweb.aer.com/continuum_frame.html (last access: 15.02.2023).
5. Ptashnik I.V., Shine K.P., Vigasin A.A. Water vapour self-continuum and water dimers: 1. Analysis of recent work // J. Quant. Spectrosc. Radiat. Transfer. 2011. V. 112. P. 1286–1303.
6. Tret'yakov M.Yu., Koshelev M.A., Serov E.A., Parshin V.V., Odintsova T.A., Bubnov G.M. Dimer vody i atmosfernyi kontinuum // Uspekhi fizicheskikh nauk. 2014. V. 184, N 11, P. 1199–1215.
7. Odintsova T.A., Tretyakov M.Yu., Simonova A.A., Ptashnik I.V., Pirali O., Campargue A. Measurement and temperature dependence of the water vapor self-continuum between 70 and 700 cm-1 // J. Mol. Struct. 2020. V. 1210. P. 128046.
8. Simonova A.A., Ptashnik I.V., Elsey J., McPheat R.A., Shine K.P., Smith K.M. Water vapour self-continuum in near-visible IR absorption bands: Measurements and semiempirical model of water dimer absorption // J. Quant. Spectrosc. Radiat. Transfer. 2022. V. 277. P. 107957.
9. Odintsova T.A., Koroleva A.O., Simonova A.A., Campargue A., Tretyakov M.Yu. The atmospheric continuum in the “terahertz gap” region (15–700 cm-1): Review of experiments at SOLEIL synchrotron and modeling // J. Mol. Spectrosc. 2022. V. 386. P. 111603.
10. Gordon I.E., Rothman L.S., Hargreaves R.J., Hashemi R., Karlovets E.V., Skinner F.M., Conway E.K., Hill C., Kochanov R.V., Tan Y., Wcisło P., Finenko A.A., Nelson K., Bernath P.F., Birk M., Boudon V., Campargue A., Chance K.V., Coustenis A., Drouin B.J., Flaud J.-M., Gamache R.R., Hodges J.T., Jacquemart D., Mlawer E.J., Nikitin A.V., Perevalov V.I., Rotger M., Tennyson J., Toon G.C., Tran H., Tyuterev V.G., Adkins E.M., Baker A., Barbe A., Canè E., Császár A.G., Dudaryonok A., Egorov O., Fleisher A.J., Fleurbaey H., Foltynowicz A., Furtenbacher T., Harrison J.J., Hartmann J.-M., Horneman V.-M., Huang X., Karman T., Karns J., Kassi S., Kleiner I., Kofman V., Kwabia-Tchana F., Lavrentieva N.N., Lee T.J., Long D.A., Lukashevskaya A.A., Lyulin O.M., Makhnev V.Yu., Matt W., Massie S.T., Melosso M., Mikhailenko S.N., Mondelain D., Müller H.S.P., Naumenko O.V., Perrin A., Polyansky O.L., Raddaoui E., Raston P.L., Reed Z.D., Rey M., Richard C., Tóbiás R., Sadiek I., Schwenke D.W., Starikova E., Sung K., Tamassia F., Tashkun S.A., Vander Auwera J., Vasilenko I.A., Vigasin A.A., Villanueva G.L., Vispoel B., Wagner G., Yachmenev A., Yurchenko S.N. The HITRAN2020 molecular spectroscopic database // J. Quant. Spectrosc. Radiat. Transfer. 2022. V. 277. P. 107949.
11. Koroleva A.O., Odintsova T.A., Tretyakov M.Yu., Pirali O., Campargue A. The foreign-continuum absorption of water vapour in the far-infrared (50–500 cm-1) // J. Quant. Spectrosc. Radiat. Transfer. 2021. V. 261. P. 107486.
12. Liebe H.J. MPM – an atmospheric millimeter wave propagation model // Intern. J. Infrared. Mill. Waves. 1989. V. 10. P. 631–650.
13. Rosenkranz P.W. Line-by-line microwave radiative transfer (non-scattering) // Remote Sens. Code Library. 2017. DOI: 10.21982/M81013.
14. Line-by-line microwave radiative transfer (non-scattering). URL: http://cetemps.aquila.infn.it/mwrnet/lblmrt_ns.html (last access: 15.02.2023).
15. Clough S.A., Kneizys F.X., Davies R.W. Line shape and water vapor continuum // Atmos. Res. 1989. V. 23. P. 229–241.
16. Scribano Y., Leforestier C. Contribution of water dimer absorption to the millimeter and far infrared atmospheric water continuum // J. Chem. Phys. 2007. V. 126. P. 234301.
17. Bielska K., Kyuberis A.A., Reed Z.D., Li G., Cygan A., Ciuryło R., Adkins E.M., Lodi L., Zobov N.F., Ebert V., Lisak D., Hodges J.T., Tennyson J., Polyansky O.L. Subpromille measurements and calculations of CO (3–0) overtone line intensities // Phys. Rev. Lett. 2022. V. 129. P. 043002.
18. Sizov F., Rogalski A. THz detectors // Prog. Quantum Electron. 2010. V. 34, N 5. P. 278–347.
19. Consolino L., Bartalini S., De Natale P. Terahertz frequency metrology for spectroscopic applications: A review // J. Infrared Millim. Terahertz Waves. 2017. V. 38, N 11. P. 1289–1315.
20. Yu S., Pearson J.C., Drouin B.J., Martin-Drumel M.-A., Pirali O., Vervloet M., Coudert L.H., Muller H.S.P., Brunken S. Measurement and analysis of new terahertz and far-infrared spectra of high temperature water // J. Mol. Spectrosc. 2012. V. 279. P. 16–25.
21. Coudert L.H., Wagner G., Birk M., Baranov Yu.I., Lafferty W.J., Flaud J.-M. The H216O molecule: Line position and line intensity analyses up to the second triad // J. Mol. Spectrosc. 2008. N 251. P. 339–357.
22. Coudert L.H., Martin-Drumell M.-A., Pirali O. Analysis of the high-resolution water spectrum up to the second triad and to = 30 // J. Mol. Spectrosc. 2014. V. 303. P. 36–41.
23. Schwenke D.W., Partridge H. Convergence testing of the analytic representation of an ab initio dipole moment function for water: Improved fitting yields improved intensities // J. Chem. Phys. 2000. V. 113. P. 6592.
24. Reed Z.D., Tran H., Ngo H.N., Hartmann J.-M., Hodges J.T. Effect of non-markovian collisions on measured integrated line shapes of CO // Phys. Rev. Lett. 2023. V. 130, N 143001. DOI: 10.1103/PhysRevLett.130.143001.
25. Lodi L., Tennyson J., Polyansky O.L. A global, high accuracy ab initio dipole moment surface for the electronic ground state of the water molecule // J. Chem. Phys. 2011. V. 135, N 3. P. 034113.
26. Sironneau V.T., Hodges J.T. Line shapes, positions and intensities of water transitions near 1.28 mm // J. Quant. Spectrosc. Radiat. Transfer. 2015. V. 152. P. 1–15.
27. Conway E.K., Kyuberis A.A., Polyansky O.L., Tennyson J., Zobov N.F. A highly accurate ab initio dipole moment surface for the ground electronic state of water vapour for spectra extending into the ultraviolet // J. Chem. Phys. 2018. V. 149. P. 084307.
28. Vasilchenko S., Mikhailenko S.N., Campargue A. Cavity ring down spectroscopy of water vapor near 750 nm: A test of the HITRAN2020 and W2020 line lists // Mol. Phys. 2022. V. 120, N 22051762.
29. Solodov A.M., Petrova T.M., Solodov A.A., Deichuli V.M., Naumenko O.V. FT spectroscopy of water vapor in the 0.9 mm transparency window // J. Quant. Spectrosc. Radiat. Transfer. 2022. V. 293, N 108389.
30. Rubin T.M., Sarrazin M., Zobov N.F., Tennyson J., Polyansky O.L. Sub-percent accuracy for the intensity of a near-infrared water line at 10670 cm-1: Experiment and analysis // Mol. Phys. 2022. V. 120, N 19–20. P. e2063769.
31. HITRAN database. URL: https://hitran.org/ (last access: 15.02.2023).
32. Jacquinet-Husson N., Armante R., Scott N.A., Chédin A., Crépeau L., Boutammine C., Bouhdaoui A., Crevoisier C., Capelle V., Boonne C., Poulet-Crovisier N., Barbe A., Chris Benner D., Boudon V., Brown L.R., Buldyreva J.,  Campargue A., Coudert L.H., Devi V.M., Down M.J., Drouin B.J., Fayt A., Fittschen C., Flaud J.-M., Gamache R.R., Harrison J.J., Hill C., Hodnebrog Ø., Hu S.-M., Jacquemart D.,  Jolly A., Jiménez E., Lavrentieva N.N., Liu A.-W., Lodi L., Lyulin O.M., Massie S.T.  Mikhailenko S., Müller H.S.P., Naumenko O.V.,  Nikitin A,  Nielsen C.J., Orphal J., Perevalov V.I., Perrin A., Polovtseva E., Predoi-Cross A., Rotger M., Ruth A.A., Yu S.S., Sung K., Tashkun S.A., Tennyson J., Tyuterev Vl.G., Vander Auwera J., Voronin B.A., Makie A. The 2015 edition of the GEISA spectroscopic database // J. Mol. Spectrosc. 2016. V. 327. P. 31–72.
33. GEISA Spectroscopic database. URL: https://geisa. aeris-data.fr/# (last access: 15.02.2023).
34. Jet Propulsion Laboratory, Catalog directory. URL: https: // spec.jpl.nasa.gov/ftp/pub/catalog/catdir.html (last access: 15.02.2023).
35. Tennyson J., Yurchenko S.N. ExoMol: Molecular line lists for exoplanet and other atmospheres // Mon. Not. R. Astron. Soc. 2012. V. 425(1). P. 21–33.
36. ExoMol, High temperature molecular line lists for modelling exoplanet atmospheres. URL: https://www.exomol.com/ (last access: 15.02.2023).
37. Furtenbacher T., Tobias R., Tennyson J., Polyansky O.L., Kyuberis A.A., Ovsyannikov R.I., Zobov N.F., Császár A.G. The W2020 database of validated rovibrational experimental transitions and empirical energy levels of water isotopologues. II. H217O and H218O with an update to H216O // J. Phys. Chem. Ref. Data. 2020. V. 49. P. 043103.
38. Conway E.K., Gordon I.E., Kyuberis A.A., Polyansky O.L., Tennyson J., Zobov N.F. Calculated line lists for H216O and H218O with extensive comparisons to theoretical and experimental sources including the HITRAN2016 database // J. Quant. Spectrosc. Radiat. Transfer. 2020. V. 241. P. 106711.
39. Polyansky O.L., Kyuberis A.A., Zobov N.F., Tennyson J., Yurchenko S.N., Lodi L. ExoMol molecular line lists XXX: A complete high-accuracy line list for water // Mon. Not. R. Astron. Soc. 2018. V. 480, N 2. P. 2597–2608.
40. Barber R.J., Tennyson J., Harris G.J., Tolchenov R.N. A high-accuracy computed water line list // Mon. Not. R. Astron. Soc. 2006. V. 368. P. 1087–1094.
41. Shirin S.V., Polyansky O.L., Zobov N.F., Barletta P., Tennyson J. Spectroscopically determined potential energy surface of H216O up to 25000 cm-1 // J. Chem. Phys. 2003. V. 118, N 5. P. 2124–2129.
42. Lynas-Gray A.E., Miller S., Tennyson J. Infrared transition intensities for water: A comparison of ab initio and fitted dipole moment surfaces // J. Mol. Spec. 1995. V. 169. P. 458–467.
43. Bubukina I.I., Zobov N.F., Polyansky O.L., Shirin S.V., Yurchenko S.N. Optimized semiempirical potential energy surface for H216O up to 26000 cm-1 // Opt. Spectrosc. 2011. V. 110, N 2. P. 160–166.
44. Conway E.K., Gordon I.E., Tennyson J., Polyansky O.L., Yurchenko S.N., Chance K. A semi-empirical potential energy surface and line list for H216O extending into the near-ultraviolet // Atmos. Chem. Phys. 2020. V. 20. P. 10015–10027.
45. Mizus I.I., Kyuberis A.A., Zobov N.F., Makhnev V.Yu., Polyansky O.L., Tennyson J. High-accuracy water potential energy surface for the calculation of infrared spectra // Phil. Trans. R. Soc. Lond. A. 2018. V. 376. P. 20170149.
46. Becker G.E., Autler S.H. Water vapor absorption of electromagnetic radiation in the centimeter wave-length range // Phys. Rev. 1946. V. 70, N 5–6. P. 300–307.
47. Liebe H.J., Thompson M.C., Dillon T.A. Dispersion studies of the 22 GHz water vapor line shape: I. The Lorentzian behavior // J. Quant. Spectrosc. Radiat. Transfer. 1969. V. 9. P. 31–47.
48. Tretyakov M.Yu., Parshin V.V., Koshelev M.A., Shanin V.N., Myasnikova S.E., Krupnov A.F. Studies of 183 GHz water line: Broadening and shifting by air, N2, and O2 and integral intensity measurements // J. Mol. Spectrosc. 2003. V. 218. P. 239–245.
49. Koshelev M.A., Tretyakov M.Yu., Golubiatnikov G.Yu., Parshin V.V., Markov V.N., Koval I.A. Broadening and shifting of the 321-, 325-, and 380-GHz lines of water vapor by the pressure of atmospheric gases // J. Mol. Spectrosc. 2007. V. 241. P. 101–108.