Vol. 36, issue 06, article # 8

Raputa V. F., Lezhenin A. A., Amikishieva R. A. Estimates of the height of rise and buoyancy of smoke plumes from high chimneys of thermal power plants from satellite information. // Optika Atmosfery i Okeana. 2023. V. 36. No. 06. P. 482–486. DOI: 10.15372/AOO20230608 [in Russian].
Copy the reference to clipboard

Abstract:

Methods for estimating the buoyancy and rise characteristics of atmospheric pollutant emissions from high sources are discussed. They are based on the application of the relations of the theory of similarity and dimension for smoke plumes. Aerological sounding data and satellite images of plumes and their shadows on the earth's surface are used as additional information. The proposed approach to assessiment of the buoyancy flows of smoke plumes and the height of their rise was tested for three large thermal power plants in Siberia. A satisfactory agreement between the results and the normative characteristics of buoyancy flow for the chimneys under consideration has been established.

Keywords:

atmosphere, smoke plume, ascent height, buoyancy flow, satellite imagery

References:

1. Kondrat'ev K.Ya., Grigor'ev Al.A., Pokrovskij O.M., Shalina E.V. Kosmicheskoe distantsionnoe zondirovanie atmosfernogo aerozolya. L.: Gidrometeoizdat, 1983. 216 p.
2. Nagorskiy P.M., Pustovalov K.N., Smirnov S.V. Dymovye shlejfy ot prirodnyh pozharov i elektricheskoe sostoyanie prizemnogo sloya atmosfery // Optika atmosf. i okeana. 2022. V. 35, N 2. P. 155–161; Nagorskiy P.M., Pustovalov K.N., Smirnov S.V. Smoke plumes from wildfires and the electrical state of the surface air layer // Atmos. Ocean. Opt. 2022. V. 35, N 4. P. 387–393.
3. Loboda E.L., Kasymov D.P., Agafontsev M.V., Rejno V.V., Gordeev E.V., Tarkanova V.A., Martynov P.S., Orlov K.E., Savin K.V., Dutov A.I., Loboda Yu.A. Vliyanie malyh prirodnyh pozharov na harakteristiki atmosfery vblizi ochaga goreniya // Optika atmosf. i okeana. 2020. V. 33, N 10. P. 818–823. DOI: 10.15372/AOO20201011.
4. McNeal J.S., Freedland G., Mastin L.G., Cal R.B., Solovitz S.A. Investigating the accuracy of one-dimensional volcanic plume models using laboratory experiments and field data // J. Geophys. Res.: Solid Earth. 2019. V. 124, N 11. P. 11290–11304. DOI: 10.1029/2018 JB017224.
5. Lamb O.D., De Angelis S., Lavallée Y. Using infrasound to constrain ash plume rise // J. Appl. Volcanology. 2015. V. 4, N 20. DOI: 10.1186/s13617-015-0038-6.
6. Gordon M., Makar P.A., Staebler R.M., Zhang J., Akingunola A., Gong W., Li S.M. A comparison of plume rise algorithms to stack plume measurements in the Athabasca oil sands // Atmos. Chem. Phys. 2018. V. 18. P. 14695–14714. DOI: 10.5194/acp-18-14695-2018.
7. Lupyan E.A., Bartalev S.A., Balashov I.V., Egorov V.A., Ershov D.V., Kobets D.A., Sen'ko K.S., Stytsenko F.V., Sychugov I.G. Sputnikovyj monitoring lesnyh pozharov v 21 veke na territorii Rossijskoj Federatsii (tsifry i fakty po dannym detektirovaniya aktivnogo goreniya) // Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa. 2017. V. 14, N 6. P. 158–175. DOI: 10.21046/2070-7401-2017-14-6-158-175.
8. Balter B.M., Balter D.B., Egorov V.V., Stal'naya M.V. Ispol'zovanie dannyh ISZ Landsat dlya opredeleniya kontsentratsii zagryaznitelej v shlejfah ot produvki gazovyh skvazhin na osnovanii modeli istochnika // Issled. Zemli iz kosmosa. 2014. N 2. P. 55–66. DOI: 10.7868/S0205961414020031.
9. Sofiev M., Ermakova T., Vankevich R. Evaluation of the smoke-injection height from wild-land fires using remote-sensing data // Atmos. Chem. Phys. 2012. V. 12. P. 1995–2006. DOI: 10.5194/acp-12-1995-2012.
10. Alekseeva M.N., Pustovalov K.N., Golovatskaya E.A., Yaschenko I.G. Raschet aerozol'nyh vybrosov ot pozharov Tomskoj oblasti na osnove distantsionnyh dannyh // Optika atmosf. i okeana. 2020. V. 33, N 9. P. 742–747; Alekseeva M.N., Pustovalov K.N., Golovatskaya E.A., Yaschenko I.G. Calculation of aerosol emissions from fires in the Tomsk region based on remote sensing data // Atmos. Ocean. Opt. 2021. V. 34, N 1. P. 68–73.
11. Raputa V.F., Lezhenin A.A. Otsenka vysoty pod"ema dymovogo shlejfa po sputnikovym snimkam // Optika atmosf. i okeana. 2020. V. 33, N 6. P. 471–475; Raputa V.F., Lezhenin A.A. Estimation of the altitude of smoke plumes from satellite images // Atmos. Ocean. Opt. 2020. V. 33, N 5. P. 539–544.
12. Vankevich P.E., Ermakova T.S., Sofiev M.A. Sravnenie rezul'tatov vychisleniya vysoty pod"ema strui dyma ot lesnyh pozharov po poluempiricheskim formulam i odnomernoj modeli BUOYANT // Uchenye zapiski. 2011. N 19. P. 61–70.
13. Bhargava A. Effect of wind speed and stack height on plume rise using different equations // Int. J. Engin. Sci. Comput. 2016. V. 6, N 4. P. 3228–3234. DOI: 10.4010/2016.748.
14. Netterville D.D.J. Plume rise, entrainment and dispersion in turbulent winds // Atmos. Environ. Part A, General Topics. 1990. V. 24, N 5. P. 1061–1081. DOI: 10.1016/0960-1686(90)90074-W.
15. Tikhonov N.A., Zakharova S.A., Davydova M.A. Modelirovanie dinamiki obrazovaniya shlejfa NO2 ot tochechnogo istochnika // Optika atmosf. i okeana. 2020. V. 33, N 9. P. 722–727; Tikhonov N.A., Zakharova S.A., Davydova M.A. Simulation of the dynamics of an NO2 plume from a point source // Atmos. Ocean. Opt. 2021. V. 34, N 1. P. 45–49.
16. Briggs G.A. A plume rise model compared with observations // J. Air Pollut. Control Assoc. 1965. V. 15, N 9. P. 433–438. DOI: 10.1080/00022470.1965. 10468404.
17. Priestley C.H.B., Ball F.K. Continuous convection from an isolated source of heat // Q. J. R. Meteorol. Soc. 1955. V. 81. P. 144–157. DOI: 10.1002/qj. 49708134803.
18. Berlyand M.E. Sovremennye problemy atmosfernoj diffuzii i zagryazneniya atmosfery. L.: Gidrometeoizdat, 1975. 448 p.
19. Fedosov A.A., Chichirova N.D., Sharifullin A.Sh. Modelirovanie nachal'nogo pod"ema vybrosov teplovyh elektricheskih stantsij. 5. Sovmestnyj raschet dinamicheskogo i teplovogo pod"ema // Izv. vuzov. Problemy energetiki. 2003. № 5–6. С. 14–20.
20. Chanady G.T. Some observations on smoke plumes // Int. J. Air Water Poll. 1961. V. 4. P. 47–51.
21. Briggs G.A. Plume rise // Atomic Energy Commission Critical Review Series. 1969. N 2507581.
22. Sofiev M., Vankevich R., Ermakova T., Hakkarainen J. Global mapping of maximum emission heights and resulting vertical profiles of wildfire emissions // Atmos. Chem. Phys. 2013. V. 13. P. 7039–7052. DOI: 10.5194/acp-13-7039-2013.
23. Ivanov E.A., Klepikova N.V., Troyanova N.I., Frejmundt G.N. Metody rascheta pod"ema fakela iz ventilyatsionnoj truby // Apparatura i novosti radiatsionnyh izmerenij (ANRI). 2014. N 4. P. 18–32.
24. Ermakova T.S., Vankevich R.E., Kolesnikov I.A. Chislennoe modelirovanie rasprostraneniya dymovyh aerozolej za predely pogranichnogo sloya atmosfery // Uchenye zapiski. 2013. N 31. P. 37–48.
25. Gribkov A.M., Zrojchikov N.A., Prohorov V.B. Formirovanie traektorii dymovogo fakela pri nalichii samookutyvaniya ogolovka dymovoj truby // Teploenergetika. 2017. N 10. P. 51–59. DOI: 10.1134/ S0040363617100034.
26. Tohidi A., Kaye N.B. Highly buoyant bent-over plumes in a boundary layer // Atmos. Environ. 2016. V. 131. P. 97–114. DOI: 10.1016/j.atmosenv.2016.01.046.
27. Tory K. Models of Buoyant Plume Rise. Report No. 451. Melbourne: Bushfire and Natural Hazards CRC, 2018. 26 p.
28. Mirsalihov K.M., Gribkov A.M., Chichirova N.D. Analiticheskij obzor metodik vybora optimal'nyh parametrov dymovyh trub // Problemy energetiki. 2021. V. 23, N 1. P. 131–145. DOI: 10.30724/1998-9903-2021-23-1-131-145.