Vol. 36, issue 06, article # 7

Gubanova D. P., Iordanskii M. A., Vinogradova A. A., Belikov I. B., Belousov V. A. Particle density values for numerical estimation of mass concentration of near-surface submicron and micron aerosol. // Optika Atmosfery i Okeana. 2023. V. 36. No. 06. P. 469–481. DOI: 10.15372/AOO20230607 [in Russian].
Copy the reference to clipboard


The results of experimental determination of near-surface aerosol density for particles of different composition and size have been published over many years. Based on the generalization of these data, as well as the results of our own field observations of microphysical characteristics and composition of Moscow aerosol, an algorithm and parameters for numerical estimation of mass concentration of submicron and micron urban aerosol are suggested. Using this algorithm, on the basis of experimental data on the size distribution function of aerosol particles in the diameter range 0.3–10 microns obtained during regular observations at IAP RAS in Moscow in 2020–2022, the mass concentration of near-surface aerosol of various fractions was calculated. A comparative analysis of the results of such an assessment and the data of synchronous measurements of mass concentration of aerosol particles using a portable aerosol spectrometer GRIMM 1.108 over the past two years has shown a good correspondence between the calculated and measured values. Density values for four ranges of aerosol particle sizes are selected for more correct numerical estimation of the mass concentration of urban aerosol of fractions PM2.5 and PM10.


Moscow, surface aerosol, density, particle size distribution, numerical concentration, mass concentration, elemental composition, morphological structure, algorithm for numerical estimation



1. Seinfeld J.H., Pandis S.N. Atmospheric Chemistry and Physics: From Air Pollution to Climate Change. 2nd еd. New York: Wiley, USA, 2006. 1232 p.
2. Kondrat'ev K.Ya., Ivlev L.S., Krapivin V.F. Atmosfernye aerozoli: Svojstva, protsessy obrazovaniya i vozdejstviya. Ot nano- do global'nyh masshtabov. SPb.: VVM, 2007. 858 p.
3. Global'nye rekomendatsii VOZ po kachestvu vozduha: kasayushchiesya tverdyh chastits (PM2,5 i PM10), ozona, dvuokisi azota, dvuokisi sery i okisi ugleroda. Rezyume [WHO global air quality guidelines: Particulate matter (PM2,5 and PM10), ozone, nitrogen dioxide, sulfur dioxide and carbon monoxide. Executive summary]. Zheneva: Vsemirnaya organizatsiya zdravoohraneniya; 2021. Litsenziya: CC BY-NC-SA 3.0 IGO. URL: https: //apps.who.int/iris/bitstream/handle/10665/345334/9789240035409-rus.pdf?sequence=9 (data obrashcheniya: 7.02.2023).
4. Air quality standards. URL: https://www.eea.europa. eu / themes / air / air-quality-concentrations / air-quality-standards (data obrashcheniya: 7.02.2023).
5. SanPiN 1.2.3685-21. Gigienicheskie normativy i trebovaniya k obespecheniyu bezopasnosti i (ili) bezvrednosti dlya cheloveka faktorov sredy obitaniya. Utv. Postanovleniem Glavnogo gosudarstvennogo sanitarnogo vracha RF ot 28.01.2021 year N 2. URL: https:// docs.cntd.ru/document/573500115 (data obrashcheniya: 3.02.2023).
6. Morawska L., Johnson G., Ristovski Z., Agranovski V. Relation between particle mass and number for submicrometer airborne particles // Atmos. Environ. 1999. V. 33. P. 1983–1990. DOI: 10.1016/S1352-2310(98)00433-6.
7. Gubanova D.P., Vinogradova A.A., Skorohod A.I., Iordanskij M.A. Anomal'noe aerozol'noe zagryaznenie vozduha v Moskve vblizi lokal'nogo antropogennogo istochnika v july 2021 year // Gidrometeorologicheskie issledovaniya i prognozy. 2021. N 4 (382). P. 134–148. DOI: 10.37162/2618-9631-2021-4-134-148.
8. Tang I.N., Munkelwitz H.R. Water activities, densities, and refractive-indexes of aqueous sulphates and sodium-nitrate droplets of atmospheric importance // J. Geophys. Res. 1994. V. 99. P. 18801–18808.
9. Baron P.A., Willeke K. Gas and particle motion, in: Aerosol Measurement: Principles, Techniques, and Applications / P.A. Baron, K. Willeke (eds.). New York: Wiley, 2001.  P. 61–97.
10. Sarangi B., Aggarwal S.G., Sinha D., Gupta P.K. Aerosol effective density measurement using scanning mobility particle sizer and quartz crystal microbalance with the estimation of involved uncertainty // Atmos. Meas. Tech. 2016. V. 9. P. 859–875. DOI: 10.5194/ amt-9-859-2016.
11. DeCarlo P.F., Slowik J.G., Worsnop D.R., Davidovits P., Jimenez J.L. Particle morphology and density characterization by combined mobility and aerodynamic diameter measurements. Part 1: Theory // Aerosol. Sci. Technol. 2004. V. 38, N 12. P. 1185–1205. DOI: 10.1080/027868290903907.
12. Pitz M., Schmid O., Heinrich J., Birmili W., Maguhn J., Zimmermann R., Wichmann H.-E., Peters A., Cyrys J. Seasonal and diurnal variation of PM2.5 apparent particle density in urban air in Augsburg, Germany // Environ. Sci. Technol. 2008. V. 42, N 14. P. 5087–5093. DOI: 10.1021/es7028735.
13. Pitz M., Cyrys J., Karg E., Wiedensohler A., Wich­mann H.-E., Heinrich J. Variability of apparent particle density of an urban aerosol // Environ. Sci. Technol. 2003. V. 37, N 19. P. 4336–42. DOI: 10.1021/ es034322p.
14. Hänel G. The real part of the mean complex refractive index and the mean density of samples of atmospheric aerosol particles // Tellus. 1968. V. 20, N 3. P. 371–379. DOI: 10.3402/tellusa.v20i3.10016.
15. Hänel G. The properties of atmospheric aerosol particles as functions of the relative humidity at thermodynamic equilibrium with the surrounding moist air // Adv. Geophys. 1976. P. 73–188. DOI: 10.1016/ s0065-2687(08)60142-9.
16. Hänel G., Thudium J. Mean bulk densities of samples of dry atmospheric aerosol particles: A summary of measured data // Pure Appl. Geophys. PAGEOPH. 1977. V. 115, N 4. P. 799–803. DOI: 10.1007/bf00881211.
17. Thudium J. A gas pycnometer (microliter) for determining the mean density of atmospheric aerosol particles // J. Aerosol Sci. 1976. V. 7, N 2. P. 167–173. DOI: 10.1016/ 0021-8502(76)90072-0.
18. Schleicher B., Künzel S., Burtscher H. In situ measurement of size and density of submicron aerosol particles // J. Appl. Phys. 1995. V. 78. P. 4416. DOI: 10.1063/1.359849.
19. McMurry P.H., Wang X., Park K., Ehara K. The relationship between mass and mobility for atmospheric particles: A new technique for measuring particle density // Aerosol. Sci. Technol. 2002. V. 36, N 2. P. 227–238. DOI: 10.1080/027868202753504083.
20. Ehara K., Shin S. Measurement of density distribution of aerosol particles by successive classification of particles according to their mass and diameter // J. Aerosol. Sci. 1998. V. 29, N 1. P. 19–20.
21. Emets E.P., Kascheev V.A., Poluektov P.P. A new technique for the determination of the density of airborne particulate matter // J. Aerosol. Sci. 1992. V. 23, N 1. P. 27–35.
22. Hu M., Peng J., Sun K., Yue D., Guo S., Wiedensohler A., Wu Z. Estimation of size-resolved ambient particle density based on the measurement of aerosol number, mass, and chemical size distributions in the winter in Beijing // Environ. Sci. Technol. 2012. V. 46. P. 9941–9947.
23. Geller M., Biswas S., Sioutas C. Determination of particle effective density in urban environments with a differential mobility analyzer and aerosol particle mass analyzer // Aerosol. Sci. Technol. 2006. V. 40, N 9. P. 709–723. DOI: 10.1080/02786820600803925.
24. Charvet A., Bau S., Paez Coy N.E., Bémer D., Thomas D. Characterizing the effective density and primary particle diameter of airborne nanoparticles produced by spark discharge using mobility and mass measurements (tandem DMA/APM) // J. Nanopart. Res. 2014. V. 16. P. 2418. DOI: 10.1007/s11051-014-2418-y.
25. Yin Z., Ye X., Jiang S., Tao Y., Shi Y., Yang X., Chen J. Size-resolved effective density of urban aerosols in Shanghai // Atmos. Environ. 2015. V. 100. P. 133–140. DOI: 10.1016/j.atmosenv.2014.10.055.
26. Khlystov A., Stanier C., Pandis S.N. An algorithm for combining electrical mobility and aerodynamic size distributions data when measuring ambient aerosol // Aerosol. Sci. Technol. 2004. V. 38:S1. P. 229–238. DOI: 10.1080/02786820390229543.
27. Kassianov E., Barnard J., Pekour M., Berg L.K., Shilling J., Flynn C., Mei F., Jefferson A. Simultaneous retrieval of effective refractive index and density from size distribution and light-scattering data: Weakly absorbing aerosol // Atmos. Meas. Tech. 2014. V. 7. P. 3247–3261. DOI: 10.5194/amt-7-3247-2014.
28. Spencer M.T., Shields L.G., Prather K.A. Simultaneous measurement of the effective density and chemical composition of ambient aerosol particles // Environ. Sci. Technol. 2007. V. 41, N 4. P. 1303–1309. DOI: 10.1021/es061425+.
29. Zhao S., Yu Y., Yin D., He J. Effective density of submicron aerosol particles in a typical valley city, Western China // Aerosol. Air Qual. Res. 2017. V. 17. P. 1–13. DOI: 10.4209/aaqr.2015.11.0641.
30. Cabada J.C., Rees S., Takahama S., Khlystov A., Pandis S.N., Davidson C.I., Robinson A.L. Mass size distributions and size resolved chemical composition of fine particulate matter at the Pittsburgh supersite // Atmos. Environ. 2004. V. 38. P. 3127–3141. DOI: 10.1016/j. atmosenv.2004.03.004.
31. Maricq M.M., Xu N. The effective density and fractal dimension of soot particles from premixed flames and motor vehicle exhaust // J. Aerosol Sci. 2004. V. 35, N 10. P. 1251–1274. DOI: 10.1016/j.jaerosci.2004.05.00.
32. Bau S., Bémer D., Grippari F., Appert-Collin J.-C., Thomas D. Determining the effective density of airborne nanoparticles using multiple charging correction in a tandem DMA/ELPI setup // J. Nanopart. Res. 2014. V. 16, N 10. DOI: 10.1007/s11051-014-2629-2.
33. Ristimäki J., Virtanen A., Marjamäki M., Rostedt A., Keskinen J. On-line measurement of size distribution and effective density of submicron aerosol particles // J. Aerosol Sci. 2002. V. 33, N 11. P. 1541–1557. DOI: 10.1016/s0021-8502(02)00106-4.
34. Virtanen A., Ristimäki J., Keskinen J. Method for measuring effective density and fractal dimension of aerosol agglomerates // Aerosol Sci. Technol. 2004. V. 38, N 5. P. 437–446. DOI: 10.1080/02786820490445155.
35. Hand J.L., Kreidenweis S.M. A new method for retrieving particle refractive index and effective density from aerosol size distribution data // Aerosol. Sci. Technol. 2002. V. 36, N 10. P. 1012–1026. DOI: 10.1080/02786820290092276.
36. Karg E. The density of ambient particles from combined DMA and APS data // J. Aerosol Sci. 2000. V. 31. P. 759–760. DOI: 10.1016/s0021-8502(00)90769-9.
37. Kannosto J., Virtanen A., Lemmetty M., Mäkelä J.M., Keskinen J., Junninen H., Hussein T., Aalto P., Kulmala M. Mode resolved density of atmospheric aerosol particles // Atmos. Chem. Phys. 2008. V. 8. P. 5327–5337. DOI: 10.5194/acp-8-5327-2008.
38. Li Z., Wei Y., Zhang Y. Xie Y., Li L., Li K., Ma Y., Sun X., Zhao W., Gu X. Retrieval of atmospheric fine particulate density based on merging particle size distribution measurements: Multi-instrument observation and quality control at Shouxian // J. Geophys. Res.: Atmospheres. 2018. V. 123, N 12. P. 474–12,488. DOI: 10.1029/2018JD028956.
39. Sumlin B.J., Oxford C.R., Seo B., Pattison R.R., Williams B.J., Chakrabarty R.K. Density and homogeneous internal composition of primary brown carbon aerosol // Environ. Sci. Technol. 2018. V. 52, N 7. P. 3982–3989. DOI: 10.1021/acs.est.8b00093.
40. Olfert J.S., Symonds J.P.R., Collings N. The effective density and fractal dimension of particles emitted from a light-duty diesel vehicle with a diesel oxidation catalyst // J. Aerosol. Sci. 2007. V. 38, N 1. P. 69–82. DOI: 10.1016/j.jaerosci.2006.10.00.
41. Rissler J., Nordin E.Z., Eriksson A.C., Nilsson P.T., Frosch M., Sporre M.K., Wierzbicka A., Svenningsson B., Löndahl J., Messing M.E., Sjogren S., Hemmingsen J.G., Loft S., Pagels J.H., Swietlicki E. Effective density and mixing state of aerosol particles in a near-traffic urban environment // Environ. Sci. Technol. 2014. V. 48, N 11. P. 6300–6308. DOI: 10.1021/es5000353.
42. Stein S.W., Turpin B.J., Cai X., Huang P.-F., Mcmurry P.H. Measurements of relative humidity-dependent bounce and density for atmospheric particles using the DMA-impactor technique // Atmos. Environ. 1994. V. 28, N 10. P. 1739–1746. DOI: 10.1016/1352-2310(94)90136-8.
43. Malloy Q.G.J., Nakao S., Qi L., Austin R., Stothers C., Hagino H., Cocker D.R. Real-time aerosol density determination utilizing a modified scanning mobility particle sizer – aerosol particle mass analyzer system // Aerosol. Sci. Technol. 2009. V. 43, N 7. P. 673–678. DOI: 10.1080/02786820902832960/.
44. Joshi P.V. Density of atmospheric aerosol particles // Atmospheric Aerosols and Nucleation / P.E. Wagner, G. Vali (eds). Lecture Notes in Physics. Berlin, Heidelberg: Springer, 1988. N 309. DOI: 10.1007/3-540-50108-8_1034.
45. Park K., Cao F., Kittelson D.B., McMurry P.H. Relationship between particle mass and mobility for diesel exhaust particles // Environ. Sci. Technol. 2003. V. 37. P. 577–583.
46. Kudryashov V.I. Analiz elementnogo sostava atmosfernyh aerozolej fizicheskimi metodami // Mezhvuzovskij sb. Problemy fiziki atmosfery. Iss. 20. Fizika i himiya atmosfernyh aerozolej. SPb.: Izd-vo SPbGU, 1997. P. 97–130.
47. Karandashev V.K., Turanov A.N., Orlova T.A., Lezhnev A.E., Nosenko S.V., Zolotareva  N.I., Moskvina I.R. Ispol'zovanie metoda mass-spektrometrii s induktivno-svyazannoj plazmoj v elementnom analize ob"ektov okruzhayushchej sredy // Zavodskaya laboratoriya. Diagnostika materialov. 2007. V. 73, N 1. P. 12–22.
48. Erhardt H. Rentgenofluorestsentnyj analiz. Primenenie v zavodskih laboratoriyah. M.: Metallurgiya, 1985. 256 p.
49. Kang E., Park I., Lee Y.J., Lee M. Characterization of atmospheric particles in Seoul, Korea using SEM-EDX // J. Nanosci. Nanotechnol. 2012. N 7. P. 6016–6021. DOI: 10.1166/jnn.2012.6394.
50. Sielicki P., Janik H., Guzman A., Namieśnik J. The progress in electron microscopy studies of particulate matters to be used as a standard monitoring method for air // Crit. Rev. Anal. Chem. 2011. V. 41. P. 314–334. DOI: 10.1080/10408347.2011.607076.
51. Gubanova D.P., Vinogradova A.A., Iordanskij M.A., Skorohod A.I. Vremennye variatsii sostava atmosfernogo aerozolya v Moskve vesnoj 2020 year // Izv. RAN. Fiz. atmosf. i okeana. 2021. V. 57, N 3. P. 334–348. DOI: 10.31857/s0002351521030056.
52. Vinogradova A.A., Gubanova D.P., Iordanskii M.A., Skorokhod A.I. Vliyanie meteorologicheskih uslovij i dal'nego perenosa vozdushnyh mass na sostav prizemnogo aerozolya v Moskve v zimnie sezony // Optika atmosf. i okeana. 2022. V. 35, N 6. P. 436–446; Vinogradova A.A., Gubanova D.P., Iordanskii M.A., Skorokhod A.I. Effect of meteorological conditions and long-range air mass transport on surface aerosol composition in winter Moscow // Atmos. Ocean. Opt. 2022. V. 35, N 6. P. 758–768.
53. Gubanova D.P., Vinogradova A.A., Iordanskii M.A., Skorokhod A.I. Variability of near-surface aerosol composition in Moscow in 2020–2021: Episodes of extreme air pollution of different genesis // Atmosphere. 2022. V. 13, N 4. P. 574–599. DOI: 10.3390/atmos13040574.
54. Raspisanie pogody. URL: http://rp5.ru.
55. Windy.com. URL: http://www.windy.com/ru.
56. WeatherArchive. URL: https://weatherarchive.ru/ Pogoda/ Moscow.
57. Stein A.F., Draxler R.R., Rolph G.D., Stunder B.J.B., Cohen M.D., Ngan F. NOAA's HYSPLIT atmospheric transport and dispersion modeling system // Bull. Am. Meteor. Soc. 2015. V. 96. P. 2059–2077. DOI: 10.1175/BAMS-D-14-00110.1.
58. NOAA Air Resources Laboratory. URL: www.arl. noaa.gov.
59. Ebert M., Weinbruch S., Hoffmann P., Ortner H.M. The chemical composition and complex refractive index of rural and urban influenced aerosols determined by individual particle analysis // Atm. Environ. 2004. V. 38(38). P. 6531–6545. DOI: 10.1016/j.atmosenv. 2004.08.048.
60. Gubanova D.P., Vinogradova A.A., Sadovskaya N.V. Brochosomes and other bioaerosols in the surface layer of the atmosphere of Moscow metropolis // Atmosphere. 2023. V. 14, N 3. P. 504. DOI: 10.3390/atmos14030504.
61. Xu G., Shi X. Characteristics and applications of fly ash as a sustainable construction material: A state-of-the-art review // Resources, Conservation and Recycling. 2018. V. 136. P. 95–109. DOI: 10.1016/j.resconrec. 2018.04.010.
62. Plotnost' grunta. URL: http://thermalinfo.ru/svojstva-materialov/mineraly/plotnost-grunta.
63. Tablitsa nasypnoj plotnosti materialov. URL: https: //www.center-pss.ru/st/st183.htm.
64. Peters T.M., Ott D., O’Shaughnessy P.T. Comparison of the Grimm 1.108 and 1.109 portable aerosol spectrometer to the TSI 3321 aerodynamic particle sizer for dry particles // Ann. Occup. Hyg. 2006. V. 50, N 8. P. 843–850. DOI: 10.1093/annhyg/mel067.