Vol. 36, issue 05, article # 13

Zuev V. V., Saveljeva E. S., Sidorovski E. A. Arctic polar vortex dynamics according to the delineation method using geopotential. // Optika Atmosfery i Okeana. 2023. V. 36. No. 05. P. 417–420. DOI: 10.15372/AOO20230513 [in Russian].
Copy the reference to clipboard

Abstract:

We compare the main characteristics of the Arctic polar vortex obtained from the NASA GSFC data (zonal mean wind at 60° N, mean temperature in the region 60–90° N) and by the vortex delineation method using geopotential (mean wind speed along the vortex edge, mean temperature inside the vortex) on the example of three largest Arctic ozone depletion events and on average over 1979‒2021. The mean wind speed along the vortex edge according to the delineation method is on average two times higher than the zonal mean wind at 60° N and is 37.3 ± 5.6 and 58.9 ± 13.1 m/s in January at the 50 and 10 hPa levels, respectively. The mean temperature inside the vortex according to the delineation method is on average 5 °C lower than the mean temperature in the region 60‒90° N in the lower stratosphere. The quantitative characteristics obtained expand the understanding of the Arctic polar vortex dynamics in the lower stratosphere.

Keywords:

stratospheric polar vortice, delineation method, geopotential

References:

1. Waugh D.W., Randel W.J. Climatology of Arctic and Antarctic polar vortices using elliptical diagnostics // J. Atmos. Sci. 1999. V. 56, N 11. P. 1594–1613.
2. Waugh D.W., Sobel A.H., Polvani L.M. What is the polar vortex and how does it influence weather? // Bull. Amer. Meteor. Soc. 2017. V. 98, N 1. P. 37–44.
3. Zhang X., Forbes J.M. Lunar tide in the thermosphere and weakening of the northern polar vortex // Geophys. Res. Lett. 2014. V. 41, N 23. P. 8201–8207.
4. Matthias V., Dörnbrack A., Stober G. The extraordinarily strong and cold polar vortex in the early northern winter 2015/2016 // Geophys. Res. Lett. 2016. V. 43, N 23. P. 12287–12294.
5. Akiyoshi H., Zhou L.B., Yamashita Y., Sakamoto K., Yoshiki M., Nagashima T., Takahashi M., Kurokawa J., Takigawa M., Imamura T. A CCM simulation of the breakup of the Antarctic polar vortex in the years 1980–2004 under the CCMVal scenarios // J. Geophys. Res. 2009. V. 114, N 3. P. D03103.
6. Zuev V.V., Savelieva E. The cause of the spring strengthening of the Antarctic polar vortex // Dynam. Atmos. Oceans. 2019. V. 87. P. 101097.
7. Hersbach H., Bell B., Berrisford P., Hirahara S., Horányi A., Muñoz-Sabater J., Nicolas J., Peubey C., Radu R., Schepers D., Simmons A., Soci C., Abdalla S., Abellan X., Balsamo G., Bechtold P., Biavati G., Bidlot J., Bonavita M., de Chiara G., Dahlgren P., Dee D., Diamantakis M., Dragani R., Flemming J., Forbes R., Fuentes M., Geer A., Haimberger L., Healy S., Hogan R.J., Hólm E., Janisková M., Keeley S., Laloyaux P., Lopez P., Lupu C., Radnoti G., de Rosnay P., Rozum I., Vamborg F., Villaume S., Thépaut J.-N. The ERA5 global reanalysis // Q. J. Roy. Meteor. Soc. 2020. V. 146, N 729. P. 1–51. DOI: 10.24381/cds.bd0915c6.
8. Zuev V.V., Savel'eva E.S., Pavlinskij A.V. Analiz dinamiki arkticheskogo polyarnogo vihrya vo vremya vnezapnogo stratosfernogo potepleniya v yanvare 2009 year // Problemy Arktiki i Antarktiki. 2021. V. 67, N 2. P. 134–146.
9. Zuev V.V., Savelieva E. Antarctic polar vortex dynamics during spring 2002 // J. Earth Syst. Sci. 2022. V. 131, N 2. P. 119.
10. Zuev V.V., Savelieva E. Antarctic polar vortex dynamics depending on wind speed along the vortex edge // Pure Appl. Geophys. 2022. V. 179, N 6–7. P. 2609–2616.
11. Gelaro R., McCarty W., Suárez M.J., Todling R., Molod A., Takacs L., Randles C.A., Darmenov A., Bosilovich M.G., Reichle R., Wargan K., Coy L., Cullather R., Draper C., Akella S., Buchard V., Conaty A., da Silva A.M., Gu W., Kim G.-K., Koster R., Lucchesi R., Merkova D., Nielsen J.E., Partyka G., Pawson S., Putman W., Rienecker M., Schubert S.D., Sienkiewicz M., Zhao B. The Modern-Era Retrospective Analysis for Research and Applications, Version 2 (MERRA-2) // J. Clim. 2017. V. 30, N 14. P. 5419–5454.
12. Newman P.A., Gleason J.F., McPeters R.D., Stolarski R.S. Anomalously low ozone over the Arctic // Geophys. Res. Lett. 1997. V. 24, N 22. P. 2689–2692.
13. Kuttippurath J., Godin-Beekmann S., Lefevre F., Nikulin G., Santee M.L., Froidevaux L. Record-breaking ozone loss in the Arctic winter 2010/2011: Comparison with 1996/1997 // Atmos. Chem. Phys. 2012. V. 12, N 15. P. 7073–7085.
14. Manney G.L., Santee M.L., Rex M., Livesey N.J., Pitts M.C., Veefkind P., Nash E.R., Wohltmann I., Lehmann R., Froidevaux L., Poole L.R., Schoeberl M.R., Haffner D.P., Davies J., Dorokhov V., Gernandt H., Johnson B., Kivi R., Kyro E., Larsen N., Levelt P.F., Makshtas A., McElroy C.T., Nakajima H., Parrondo M.C., Tarasick D.W., von der Gathen P., Walker K.A., Zinoviev N.S. Unprecedented Arctic ozone loss in 2011 // Nature. 2011. V. 478, N 7370. P. 469–475.
15. Rao J., Garfinkel C.I. The strong stratospheric polar vortex in March 2020 in sub-seasonal to seasonal models: Implications for empirical prediction of the low Arctic total ozone extreme // Geophys. Res. Lett. 2021. V. 126, N 9. P. e2020JD034190.