Vol. 36, issue 04, article # 1

Borkov Yu. G., Sulakshina O. N., Serdyukov V. I., Sinitsa L. N. Spectroscopic parameters of the (3–0) vibrational band for the 15N16O molecule in the ground electronic state. // Optika Atmosfery i Okeana. 2023. V. 36. No. 04. P. 251–256. DOI: 10.15372/AOO20230401 [in Russian].
Copy the reference to clipboard

Abstract:

The spectrum of the 15N16O molecule in the region 5200–5500 сm-1 is recorded and analyzed. As a result of the analysis, 150 L-doublets of vibration-rotational lines are found in the 3–0 band of the main transitions between the 21/2 and 23/2 electronic states. For 108 of them, when the splitting value was greater than 4.5 × 10-13 сm-1, it was possible to obtain the positions and relative intensities of each component of the doublet, while the self-expansion parameter was fixed to the value from HITRAN2020, and the intensities of the components e and f were considered equal. The maximum of the rotational quantum number J was 30.5. The frequencies of the transitions recorded, weighted in accordance with the experimental uncertainties, were processed by the program code using the non-linear least squares method. As a result of processing, the spectroscopic constants for the v = 3 vibrational state of the 15N16O isotopologue are found. The L-doubling constants for this state are determined for the first time. The results are compared with the well-known database of spectroscopic information HITRAN2020.
 

Keywords:

NO, isotopologue, registered spectrum, vibration band 3–0, spectroscopic constants

References:

1. Belan B.D. Ozon v troposfere. Tomsk: IOA SO RAN, 2010. 488 p.
2. Gordon I.E., Rothman L.S., Hargreaves R.J., Hashemi R., Karlovets E.V., Skinner F.M., Conway E.K., Hill C., Kochanov R.V., Tan Y., Wcislo P., Finenko A.A., Nelson K., Bernath P.F., Birk M., Boudon V., Campargue A., Chance K.V., Coustenis A., Drouin B.J., Flaud J.-M., Gamache R.R., Hodges J.T., Jacquemart D., Mlawer E.J., Nikitin A.V., Perevalov V.I., Rotger M., Tennyson J., Toon G.C., Tran H., Tyuterev V.G., M.Adkins E.M., Baker A., Barbe A., Cane E., Csaszar A.G., Dudaryonok A., Egorov O., Fleisher A.J., Fleurbaey H., Foltynowicz A., Furtenbacher T., Harrison J.J., Hartmann J.-M., Horneman V.-M., Huang X., Karman T., Karns J., Kassi S., Kleiner I., Kofman V., Kwabia-Tchana F., Lavrentieva N.N., Lee T.J., Long D.A., Lukashev­skaya A.A., Lyulin O.M., Makhnev V.Yu., Matt W., Massie S.T., Melosso M., Mikhailenko S.N., Mondelain D., Reed Z.D., Rey M., Richard C., Tobias R., Sadiek I., Schwenke D.W., Starikova E., Sung K., Tamassia F., Tashkun S.A., Vander Auwera J., Vasilenko I.A., Vigasin A.A., Villanueva G.L., Vispoel B., Wagner G., Yachmenev A., Yurchenko S.N. The HITRAN2020 molecular spectroscopic database // J. Quant. Spetrosc. Radiat. Transfer. 2022. V. 277. P. 107949.
3. Sulakshina O.N., Borkov Yu.G. Critical evaluation of measured line positions of 14N16O in X2P state // J. Quant. Spetrosc. Radiat. Transfer. 2018. V. 209. P. 171–179.
4. Olman M.D., McNelis D M., Hause C.D. Molecular constants of nitric oxide from near infrared spectrum // J. Mol. Spectrosc. 1964. V. 14. P. 62–78.
5. Keck D.B., Hause C.D. High resolution study of nitric oxide near 5.4 microns // J. Mol. Spectrosc. 1968. V. 26. P. 163–174.
6. Amiot C., Guelachvili G. Infrared study of the 15N isotopic species of nitric oxide near 5.4 mm /// J. Mol. Spectrosc. 1979. V. 76. P. 86–103.
7. Teffo J.L., Henry A., Cardinet Ph., Valentin A. Determination of molecular constants of nitric oxide from (1–0), (2–0) (3–0) bands of the 15N16O and 15N18O isotopic species // J. Mol. Spectrosc. 1980. V. 82. P. 348–363.
8. Meerts W.L., Dymanus A. The hyperfine L-doubling spectrum of 14N16O and 15N16O // J. Mol. Spectrosc. 1972. V. 44. P. 320–3463.
9. Dale R.M., Johns J.W.C., McKeller A.R.W., Riggin M. High-resolution laser magnetic resonance and infrared-radiofrequency double-resonance spectroscopy of NO and its isotopes near 5.4 mm // J. Mol. Spectrosc. 1977. V. 67. P. 440–458.
10. Saleck A.H., Yamada K.M.T., Winnewisser G. Isotopic nitric oxide spectra and breakdown of the Born-Oppenheimer approximation // Mol. Phys. 1991. V. 72. P. 1135–1148.
11. Varberg T.D., Stroh F., Evenson K.M. Far-Infrared rotational and fine-structure transition frequencies and nolecular constants of NO and NO in the X∏ (= 0) state // J. Mol. Spectrosc. 1999. V. 196. P. 5–13.
12. Wong A., Yurchenko S.N., Bernath P., Holder S., Muller P., McConkey S., Tennyson J. ExoMol line list-XXI. Nitric Oxide (NO) // M. N. R. Astron. Soc. 2017. V. 470. P. 882–897.
13. Lyulin O.M. Opredelenie parametrov spektral'nykh linij iz neskol'kikh spektrov pogloshcheniya s pomoshch'yu programmy MultiSpectrum Fitting // Optika atmosf. i okeana. 2015. V. 28, N 5. P. 408–416; Lyulin O.M. Determination of spectral line parameters from several absorption spectra with the MultiSpectrum Fitting Computer Code // Atmos. Ocean. Opt. 2015. V. 28, N 6. P. 487–495.
14. Brown J.M., Colbourn E.A., Watson J.K.G., Wayne F.D. En effective Hamiltonian for diatomic molecules. Ab initio calculations of parameters of HCl+ // J. Mol. Spectrosc. 1979. V. 74. P. 294–318.
15. Sulakshina O.N., Borkov Yu.G. Global modelling of the experimental energy levels and observed line positions: Dunham coefficients for the ground state of 14N16O // Mol. Phys. 2018. V. 116. P. 3519–3529.