Vol. 36, issue 03, article # 8

Russkova T. V., Shishko V. A. Statistical simulation of laser pulse propagation in cirrus clouds with accounting for multiple scattering. // Optika Atmosfery i Okeana. 2023. V. 36. No. 03. P. 214–223. DOI: 10.15372/AOO20230308 [in Russian].
Copy the reference to clipboard

Abstract:

An original statistical model of laser pulse propagation in a scattering medium is considered, which makes it possible to calculate the power of a lidar signal taking into account scattering effects of any multiplicity. A comparative analysis of the temporal structure of the signal obtained using the model suggested and alternative methods is carried out. The features of the propagation of a laser pulse from a ground-based lidar in continuous cirrus clouds are studied taking into account the effects of multiple scattering. The dependence of the multiple scattering background on the cloud optical and microphysical characteristics (extinction coefficient, degree of roughness, size and shape of ice particles) and parameters of the lidar receiving system is studied. The simulation results indicate a high sensitivity of the part of the echo signal due to multiple scattered light to variable parameters, which should be taken into account when setting and solving inverse problems.
 

Keywords:

lidar sounding, laser pulse propagation, multiple scattering, cirrus clouds, Monte Carlo method

References:

  1. Middleton W.E.K., Spilhaus A.F. Meteorological instruments. Canada: University of Toronto, 3rd ed. 1953.
  2. National Aeronautics and Space Administration. USA, 2022. URL: https://www.nasa.gov/missions (last access: 15.09.2022).
  3. Balin Yu.S., Tihomirov A.A. Istoriya sozdaniya i raboty v sostave orbital'noi stantsii «Mir» pervogo rossiiskogo kosmicheskogo lidara BALKAN // Optika atmosf. i okeana. 2011. V. 24, N 12. P. 1078–1087.
  4. Cloud-Aerosol Transport System (CATS). URL: https: //cats.gsfc.nasa.gov/ (last access: 27.09.2022).
  5. Winker D.M., Vaughan M., Omar A., Hu Y., Powell K., Liu Z., Hunt W., Young S. Overview of the CALIPSO Mission and CALIOP data processing algorithms // J. Atmos. and Ocean. Technol. 2009. V. 26, N 11. P. 2310–2323.
  6. GAW Aerosol Lidar Observations Network: GALION. URL: http://alg.umbc.edu/ galion/ (last access: 27.09.2022).
  7. Kaul' B.V., Samohvalov I.V. Pomekha mnogokratnogo rasseyaniya pri lidarnyh izmereniyah matrits obratnogo rasseyaniya sveta kristallicheskih oblakov // Optika atmosf. i okeana. 1999. V. 12, N 5. P. 401–404.
  8. Liou K.N., Schotland R.M. Multiple scattering and depolarization from water clouds for a pulsed lidar system // J. Atmos. Sci. 1971. V. 28, N 5. P. 772–784.
  9. Eloranta E.W., Shipley S.T. A solution for multiple scattering // Atmospheric Aerosols: Their Formation, Optical Properties and Effects. Hampton: Spectrum Press, 1982. P. 227–239.
  10. Bissonnette L.R., Hutt D.L. Multiply scattered aerosol lidar returns: Inversion method and comparison with in situ measurements // Appl. Opt. 1995. V. 34, N 30. P. 6959–6975.
  11. Krekov G.M., Krekova M.M. Struktura signala orbital'nogo lidara, otrazhennogo verhnei kromkoi oblakov. Pt. 2. Opticheski neodnorodnye oblaka // Optika atmosf. i okeana. 1998. V. 11, N 1. P. 51–54.
  12. Elastic Lidar. Theory, Practice, and Analysis Methods / V.A. Kovalev, W.E. Eichinger (eds.). Hoboken: Wiley-Interscience, 2004. 640 p.
  13. Korshunov V.A. Mnogokratnoe rasseyanie v peristyh oblakah i ego uchet pri interpretatsii lidarnyh izmerenii v stratosfere // Optika atmosf. i okeana. 2021. V. 34, N 12. P. 969–975; Korshunov V.A. Multiple scattering in cirrus clouds and taking it into account when interpreting lidar measurements in the stratosphere // Atmos. Ocean. Opt. 2022. V. 35, N 2. P. 151–157.
  14. Marchuk G.I., Mihailov G.A., Nazaraliev M.A., Darbinyan R.A., Kargin B.A., Elepov B.S. Metod Monte-Karlo v atmosfernoi optike. Novosibirsk: Naukа, 1976. 280 p.
  15. Krekov G.M. Metod Monte-Karlo v problemah atmosfernoi optiki // Optika atmosf. i okeana. 2007. V. 20, N 9. P. 826–836.
  16. Kablukova E.G., Kargin B.A. Effektivnye diskretno-stohasticheskie modifikatsii lokal'nyh otsenok metoda Monte-Karlo dlya zadach lazernogo zondirovaniya rasseivayushchih sred // Vychislitel'nye tekhnologii. 2012. V. 17, N 3. P. 70–82.
  17. Bryuhanova V.V., Samohvalov I.V., Abramochkin A.I., Abramochkin S.A., Tihomirov A.A. Lidarnyi signal mnogokratnogo rasseyaniya ot kapel'nyh oblakov // Optika atmosf. i okeana. 2003. V. 16, N 9. P. 773–782.
  18. Russkova T.V. Modelirovanie perenosa solnechnogo izlucheniya v oblachnoi atmosfere metodom Monte-Karlo s ispol'zovaniem graficheskogo protsessora i tekhnologii NVIDIA CUDA // Optika atmosf. i okeana. 2017. V. 30, N 11. P. 915–926; Russkova T.V. Monte Carlo simulation of the solar radiation transfer in a cloudy atmosphere with the use of graphic processor and NVIDIA CUDA technology // Atmos. Ocean. Opt. 2018. V. 31, N 2. P. 119–130.
  19. Prigarin S.M. Statisticheskoi modelirovanie effektov, svyazannyh s mnogokratnym rasseyaniem impul'sov nazemnyh i kosmicheskih lidarov v oblachnoi atmosfere // Optika atmosf. i okeana. 2016. V. 29, N 9. P. 747–751; Prigarin S.M. Monte Carlo simulation of the effects caused by multiple scattering of ground-based and spaceborne lidar pulses in clouds // Atmos. Ocean. Opt. 2017. V. 30, N 1. P. 79–83.
  20. Bissonnette L.R., Bruscaglioni P., Ismaelli A., Zaccanti G., Cohen A., Benayahu Y., Kleiman M., Egert S., Flesia C., Schwendimann P., Starkov A.V., Noormohammadian M., Oppel U.G., Winker D.M., Zege E.P., Katsev I.L., Polonsky I.N. LIDAR multiple scattering from clouds // Appl. Phys. B. 1995. V. 60. P. 355–362.
  21. Deirmendzhan D. Rasseyanie elektromagnitnogo izlucheniya sfericheskimi polidispersnymi chastitsami. M.: Mir, 1971. 303 с.
  22. Bissonnette L.R. Multiple scattering of narrow light beams in aerosols // Appl. Phys. B. 1995. V. 60. P. 315–323.
  23. Flesia C., Schwendimann P. Analytical multiple scattering extension of the mie theory // Appl. Phys. B. 1993. V. 56. P. 157–163.
  24. Zege E.P., Katsev I.L., Polonsky I. Analytical solution to LIDAR return signals from clouds with regard to multiple scattering // Appl. Phys. B. 1995. V. 60. P. 345–353.
  25. Winker D., Poole L.R. Monte-Carlo calculations of cloud returns for ground-based and space-based LIDARS // Appl. Phys. B. 1995. V. 60. P. 341–344.
  26. Bruscaglioni P., Ismaelli A., Zaccanti G. Monte-Carlo calculations of LIDAR returns: Procedure and results // Appl. Phys. B. 1995. V. 60. P. 325–329.
  27. Baum B.A., Yang P., Heymsfield A.J., Bansemer A., Merrelli A., Schmitt C., Wang C. Ice cloud single-scattering property models with the full phase matrix at wavelengths from 0.2 to 100 μm // J. Quant. Spectrosc. Radiant. Transfer. 2014. V. 146. P. 123–139.
  28. Yang P., Wei H., Huang H.-L., Baum B.A., Hu Y.X., Kattawar G.W., Mishchenko M.I., Fu Q. Scattering and absorption property database for nonspherical ice particles in the near- through far-infrared spectral region // Appl. Opt. 2005. V. 44, N 26. P. 5512–5523.
  29. Konoshonkin A.V., Borovoi A.G., Kustova N.V., Shishko V.A., Timofeev D.N. Rasseyanie sveta na atmosfernyh ledyanyh kristallah v priblizhenii fizicheskoi optiki. Novosibirsk: Izd-vo SO RAN, 2020. 219 p.
  30. Zhou C., Yang P. Backscattering peak of ice cloud particles // Opt. Express. 2015. V. 23, N 9. P. 11995–12003.
  31. Platt C.N.R. Remote sounding of high clouds. III: Monte Carlo calculations of multiple-scattered lidar returns // Atmos. Sci. 1981. V. 38. P. 156–167.
  32. Yang P., Kattawar G.W., Hong G., Minnis P., Hu Y.X. Uncertainties associated with the surface texture of ice particles in satellite-based retrieval of cirrus clouds: Part I. Single scattering properties of ice crystals with surface roughness // IEEE Trans. Geosci. Remote Sens. 2008. V. 46. P. 1940–1947.
  33. Shishko V.A., Konoshonkin A.V., Kustova N.V., Timofeev D.N., Borovoi A.G. Coherent and incoherent backscattering by a single large particle of irregular shape // Opt. Express. 2019. V. 27, N 23. P. 32984–32993.
  34. Konoshonkin A.V., Kustova N.V., Shishko V.A., Borovoi A.G. Metodika resheniya zadachi rasseyaniya sveta na ledyanyh kristallah peristyh oblakov v napravlenii rasseyaniya nazad metodom fizicheskoi optiki dlya lidara s zenitnym skanirovaniem // Optika atmosf. i okeana. 2016. V. 29, N 1. P. 40–50; Konoshonkin A.V., Kustova N.V., Shishko V.A., Borovoi A.G. The technique for solving the problem of light backscattering by ice crystals of cirrus clouds by the physical optics method for a lidar with zenith scanning // Atmos. Ocean. Opt. 2016. V. 29, N 3. P. 252–262.