Vol. 36, issue 03, article # 7

Nasrtdinov I. M., Zenkova P. N., Zhuravleva T. B., Uzhegov V. N., Konovalov I. B. Simulation of radiative forcing of smoke aerosol in the Arctic using measurements in the large aerosol chamber of Institute of Atmospheric Optics, Siberian Branch, Russian Academy of Sciences. // Optika Atmosfery i Okeana. 2023. V. 36. No. 03. P. 209–213. DOI: 10.15372/AOO20230307 [in Russian].
Copy the reference to clipboard

Abstract:

The results of experiments carried out in the Large Aerosol Chamber of IAO SB RAS during 2021–2022 to study the optical characteristics of smoke aerosol with a long aging time (up to 2–3 days) are presented. The influence of the evolution of optical characteristics of pyrolysis and mixed smokes on the radiative forcing of smoke aerosol (RFA) at the top of atmosphere in the Arctic region in summer is estimated. It is shown that for pyrolysis smokes, the main factor that determines the time dependence of RFA is the evolution of the aerosol optical thickness, while for mixed smokes, it is also necessary to take into account the temporal variability of the single scattering albedo of aerosol particles. The dependence of RFA on underlying surface types and illumination conditions typical for the Arctic region is considered for different modes of biomass combustion.
 

Keywords:

pyrolysis and mixed smokes, aerosol optical characteristics, temporal variability, aerosol radiative forcing, Arctic

References:

  1. Bond T.C., Doherty S.J., Fahey D.W., Forster P.M., Berntsen T., DeAngelo B.J., Flanner M.G., Ghan S., Kärcher B., Koch D., Kinne S., Kondo Y., Quinn P.K., Sarofim M.C., Schultz M.G., Schulz M., Venkataraman C., Zhang H., Zhang S., Bellouin N., Guttikunda S.K., Hopke P.K., Jacobson M.Z., Kaiser J.W., Klimont Z., Lohmann U., Schwarz J.P., Shindell D., Storelvmo T., Warren S.G., Zender C.S. Bounding the role of black carbon in the climate system: A scientific assessment // J. Geophys. Res.: Atmos. 2013. V. 118, N 11. P. 5380–5552. DOI: 10.1002/jgrd.50171.
  2. Sand M., Berntsen T., von Salzen K., Flanner M., Langner J., Victor D. Response of arctic temperature to changes in emissions of short-lived climate forcers // Nat. Clim. Change. 2016. V. 6. P. 286–289. DOI: 10.1038/nclimate2880.
  3. Liu S., Aiken A.C., Arata C., Dubey M.K, Stockwell C.E., Yokelson R.J, Stone E.A, Jayarathne T., Robinson A.L., DeMott P.J., Kreidenweis S.M. Aerosol single scattering albedo dependence on biomass combustion efficiency: Laboratory and field studies // Geophys. Res. Lett. 2014. V. 41, N 2. P. 742–748. DOI: 10.1002/2013GL058392.
  4. Popovicheva O.B., Kozlov V.S., Rakhimov R.F., Shmargunov V.P., Kireeva E.D., Persiantseva N.M., Timofeev M.A., Engling G., Eleftheriadis K., Diapouli E., Panchenko M.V., Zimmermann R., Schnelle-Kreis J. Optiko-mikrofizicheskie i fiziko-khimicheskie kharakteristiki dymov goreniya sibirskikh biomass: eksperimenty v aerozol'noi kamere // Optika atmosf. i okeana. 2016. V. 29, N 4. P. 323–331; Popovicheva O.B., Kozlov V.S., Rakhimov R.F., Shmargunov V.P., Kireeva E.D., Persiantseva N.M., Timofeev M.A., Engling G., Eleftheriadis K., Diapouli E., Panchenko M.V., Zimmermann R., Schnelle-Kreis J. Optical-microphysical and physical-chemical characteristics of Siberian biomass burning: Experiments in aerosol chamber // Atmos. Ocean. Opt. 2016. V. 29, N 5. P. 492–500.
  5. Kozlov V.S., Rakhimov R.F., Shmargunov V.P. Izmenchivost' kondensatsionnykh svoistv smeshannogo dyma goreniya biomassy na razlichnykh stadiyakh ego evolyutsii // Optika atmosf. i okeana. 2017. V. 30, N 10. P. 846–855; Kozlov V.S., Rakhimov R.F., Shmargunov V.P. Variations in condensation properties of mixed smoke from biomass burning at different smoke evolution stages // Atmos. Ocean. Opt. 2018. V. 31, N 1. P. 9–18.
  6. Kozlov V.S., Konovalov I.B., Uzhegov V.N., Chernov D.G., Pol’kin Vas.V., Zenkova P.N., Yausheva E.P., Shmargunov V.P., Dubtsov S.N. Dynamics of optical-microphysical characteristics of smokes from Siberian wildfires in the Big Aerosol Chamber at the stages of smoke generation and ageing // Proc. SPIE. 2020. P. 1156046.
  7. Popova S.A., Kozlov V.S., Makarov V.I., Konovalov I.B. Analiz vliyaniya UF-oblucheniya na sostav i absorbiruyushchie svoistva uglerodsoderzhashchikh chastits po dannym izmerenii dymov ot szhiganiya drevesiny sosny v Bol'shoi aerozol'noi kamere // Optika atmosf. i okeana. 2021. V. 34, N 12. P. 965–968; Popova S.A., Kozlov V.S., Makarov V.I., Konovalov I.B. Analysis of the effect of UV irradiation on the composition and absorbing properties of carbon-containing particles based on measurements of smoke from burning pine wood in the large aerosol chamber // Atmos. Ocean. Opt. 2022. V. 35, N 2. P. 142–145.
  8. Kozlov V.S., Shmargunov V.P., Panchenko M.V. Modified aethalometer for monitoring of black carbon concentration in atmospheric aerosol and technique for correction of the spot loading effect // Proc. SPIE. 2016. V. 10035.
  9. Zenkova P.N., Terpugova S.A., Pol’kin V.V., Pol’kin Vas.V., Uzhegov V.N., Kozlov V.S., Yausheva E.P., Panchenko M.V. Razvitie empiricheskoi modeli opticheskikh kharakteristik aerozolya Zapadnoi Sibiri // Optika atmosf. i okeana. 2021. V. 34, N 3. P. 192–198; Zenkova P.N., Terpugova S.A., Pol’kin V.V., Pol’kin Vas.V., Uzhegov V.N., Kozlov V.S., Yausheva E.P., Panchenko M.V. Development of an empirical model of optical characteristics of aerosol in Western Siberia // Atmos. Ocean. Opt. 2021. V. 34, N 4. P. 320–326.
  10. Panchenko M.V., Kozlov V.S., Pol’kin V.V., Pol’kin Vas.V., Terpugova S.A., Uzhegov V.N., Chernov D.G., Shmargunov V.P., Yausheva E.P., Zenkova P.N. Aerosol characteristics in the near-ground layer of the atmosphere of the city of Tomsk in different types of aerosol weather // Atmosphere. 2020. V. 11, N 1. P. 20–39. DOI: 10.3390/atmos11010020.
  11. Kozlov V.S., Yausheva E.P., Terpugova S.A., Panchenko M.V., Chernov D.G., Shmargunov V.P. Optical-microphysical properties of smoke haze from Siberian forest fires in summer 2012 // Int. J. Rem. Sens. 2014. V. 35, N 15. P. 5722–5741.
  12. Ivlev L.S., Popova S.I. Opticheskie konstanty veshchestva atmosfernogo aerozolya // Izv. vuzov. Fizika. 1972. N 5. P. 91–97.
  13. Andreev S.D., Ivlev L.S. Modelirovanie opticheskikh kharakteristik aerozolei prizemnogo sloya atmosfery v oblasti spektra 0.3–15 mm. Pt. 2. Model' sostava i struktury aerozolei // Optika atmosf. i okeana. 1995. V. 8, N 8. P. 1227–1235.
  14. Zuev V.E., Krekov G.M. Opticheskie modeli atmosfery. L.: Gidrometeoizdat, 1986. 256 p.
  15. Laktionov A.G. Ravnovesnaya geterogennaya kondensatsiya. L.: Gidrometeoizdat. 1988. 160 p.
  16. Konovalov I.B., Golovushkin N.A., Beekmann M., Andreae M.O. Insights into the aging of biomass burning aerosol from satellite observations and 3D atmospheric modeling: evolution of the aerosol optical properties in Siberian wildfire plumes // Atmos. Chem. Phys. 2021. V. 21, N 1. P. 357–392. DOI: 10.5194/acp-21-357-2021.
  17. Zhuravleva T.B., Nasrtdinov I.M., Konovalov I.B., Golovushkin N.A. Radiatsionnyi forsing dymovogo aerozolya s uchetom fotokhimicheskoi evolyutsii ego organicheskoi komponenty: vliyanie uslovii osveshchennosti i al'bedo podstilayushchei poverkhnosti // Optika atmosf. i okeana. 2022. V. 35, N 9. P. 748–758. DOI: 10.15372/AOO20220908.
  18. Baldridge A.M., Hook S.J., Grove C.I., Rivera G. The ASTER spectral library version 2.0 // Remote Sens. Environ. 2009. V. 113, N 4. P. 711–715. DOI: 10.1016/j.rse.2008.11.007.
  19. Schmeisser L., Backman J., Ogren J.A., Andrews E., Asmi E., Starkweather S., Uttal T., Fiebig M., Sharma S., Eleftheriadis K., Vratolis S., Bergin M., Tunved P., Jefferson A. Seasonality of aerosol optical properties in the Arctic // Atmos. Chem. Phys. 2018. V. 18, N 16. P. 11599–11622. DOI: 10.5194/acp-18-11599-2018.
  20. Zhuravleva T.B., Kabanov D.M., Sakerin S.M., Firsov K.M. Modelirovanie pryamogo radiatsionnogo forsinga dlya tipichnykh letnikh uslovii Sibiri. Part 1: Metod rascheta i vybor vkhodnykh parametrov // Optika atmosf. i okeana. 2009. V. 22, N 2. P. 163–172; Zhuravleva T.B., Kabanov D.M., Sakerin S.M., Firsov K.M. Simulation of aerosol direct radiative forcing under typical summer conditions of Siberia. Part 1. Method of calculation and choice of input parameters // Atmos. Ocean. Opt. 2009. V. 22, N 1. P. 63–73.