Vol. 36, issue 03, article # 6

Zorkal’tseva O. S., Antokhina O. Yu., Аntokhin P. N. Long-term variability of parameters of sudden stratospheric warmings according to ERA5 reanalysis data. // Optika Atmosfery i Okeana. 2023. V. 36. No. 03. P. 200–208. DOI: 10.15372/AOO20230306 [in Russian].
Copy the reference to clipboard


This paper is devoted to assessing the long-term variability of the parameters of sudden stratospheric warmings (SSW) from 1979 to 2021. The values of the mean zonal air temperature at a latitude of 80°N and zonal average wind speed at 60°N at altitudes of 10 hPa are used as a criterion for estimating the SSW. Major SSWs are classified according to their types – with split of the polar vortex (PW) and with PW displacement. Estimates are made of the variability of such SSW parameters as the number of events per winter, SSW type, SSW duration, start date and maximal temperature during SSW over the past 42 years. No trend changes are found, but oscillatory behavior of the parameters is observed in the high-latitude stratosphere.


sudden stratospheric warming, stratosphere, methods for identifying stratospheric warmings


  1. IPCC, 2021: Summary for Policymakers // Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, 2021. P. 1–41.
  2. Andrews D., Taylor F., McIntyre M. The influence of atmospheric waves on the general circulation of the middle atmosphere // Phil. Trans. Roy. Soc. London. Ser. A. 1987. P. 693–705.
  3. Scott R., Polvani L. Internal variability of the winter stratosphere. Part I: Time independent forcing // J. Atmos. Sci. 2006. V. 63. P. 2758–2776.
  4. Pogoreltsev A.I., Savenkova E.N., Pertsev N.N. Vnezapnye stratosfernye potepleniya: Rol' normal'nyh atmosfernyh mod // Geomagnetizm i aeronomiya. 2014. V. 54, N 3. P. 387–403. DOI: 10.7868/S0016794014020163.
  5. Matsuno T. A dynamical model of the stratospheric sudden warming // J. Atmos. Sci. 1971. V. 28, N 8. P. 1479–1494. DOI: 10.1175/1520-0469(1971)028< 1479:ADMOTS>2.0.CO;2.
  6. Baldwin M., Ayarzaguena B., Birner T., Butchart N., Butler A., Charlton-Perez A., Domeisen D., Garfinkel C., Garny H., Gerber E., Hegglin M., Langematz U., Pedatella N. Sudden stratospheric warmings // Rev. Geophys. 2021. V. 58. P. e2020RG000708. DOI: 10.1029/2020RG000708.
  7. Marichev V.N., Bochkovskii D.A. Lidarnye issledovaniya termicheskogo rezhima stratosfery nad Tomskom za 2012–2015 years // Optika atmosf. i okeana. 2018. V. 31, N 1. P. 28–37. DOI: 10.15372/AOO20180105.
  8. Zorkaltseva O.S., Vasilyev R.V. Stratospheric influence on MLT over mid-latitudes in winter by Fabry-Perot interferometer data // Ann. Geophys. 2021. V. 39. P. 267–276. DOI: 10.5194/angeo-39-267-2021.
  9. Medvedeva I.V., Semenov A.I., Pogoreltsev A.I., Tatarnikov A.V. Influence of sudden stratospheric warming on the mesosphere/lower thermosphere from the hydroxyl emission observations and numerical simulations // J. Atmos. Sol.-Terr. Phys. 2019. V. 187. P. 22–32. DOI: 10.1016/j.jastp.2019.02.005.
  10. Koval A.V., Chen W., Didenko K.A., Ermakova T.S., Gavrilov N.M., Pogoreltsev A.I., Toptunova O.N., Wei K., Yarusova A.N., Zarubin A.S. Modelling the residual mean meridional circulation at different stages of sudden stratospheric warming events // Ann. Geophys. 2021. V. 39. P. 357–368. DOI: 10.5194/angeo-39-357-2021.
  11. Vargin P.N., Kiryushov B.M. Vnezapnoe stratosfernoe poteplenie v Arktike v fevrale 2018 year i ego vliyanie na troposferu, mezosferu i ozonovyi sloi // Meteorol. i gidrol. 2019. N 2. P. 41–56.
  12. Sigmond M., Scinocca J., Kharin V., Shepherd T. Enhanced seasonal forecast skill following stratospheric sudden warmings // Nat. Geosci. 2013. V. 6, N 2. P. 98–102. DOI: 10.1038/ngeo1698.
  13. WMO: Implementation of the WMO-IQSY STRATWARM PROGRAMME. 1964. V. 13, N 4. P. 200–205. URL: https://library.wmo.int/doc_num.php? explnum_ id=6525 (last access: 13.11.2019).
  14. Charlton A., Polvani L. A new look at stratospheric sudden warmings. Part I: Climatology and modeling benchmarks // J. Clim. 2007. V. 20. P. 449–469. DOI: 10.1175/JCLI 3996.1.
  15. Butler A., Seidel D., Hardiman S., Butchart N., Birner T., Match A. Defining sudden stratospheric warmings // Bull. Am. Meteorol. Soc. 2015. V. 96. P. 1913–1928. DOI: 10.1175/bams-d-13-00173.1.
  16. Choi H., Kim B., Choi W. Type classification of sudden stratospheric warming based on pre- and post warming periods // J. Clim. 2019. V. 32, N 8. P. 2349–2367. DOI: 10.1175/JCLI-D-18-0223.1.
  17. Palmeiro F., Barriopedro D., Ricardo G., Calvo N. Comparing sudden stratospheric warming definitions in reanalysis data // J. Clim. 2015. V. 28, N 17. P. 6823–6840. DOI: 10.1175/JCLI-D-15-0004.1.
  18. Wright C., Hall R., Banyard T., Hindley H., Krisch I., Mitchell D., Seviour W. Dynamical and surface impacts of the January 2021 sudden stratospheric warming in Novel Aeolus Wind Observations, MLS and ERA5 // Weather Clim. Dynam. 2021. V. 2. P. 1283–1301. DOI: 10.5194/wcd-2-1283-2021.
  19. Vargin P.N., Gur'yanov V.V., Luk'yanov A.N., Vyazankin A.S. Dinamicheskie protsessy stratosfery Arktiki zimoi 2020–2021 year // Izv. RAN. Fizika atmosf. i okeana. 2021. V. 57, N 6. P. 651–664.
  20. Manney G., Lawrence D., Santee M., Read W., Livesey N., Lambert A., Froidevaux L., Pumphrey H., Schwartz M. A minor sudden stratospheric warming with a major impact: Transport and polar processing in the 2014/2015 Arctic winter // Geophys. Res. Lett. 2015. V. 42. P. 7808–7816. DOI: 10.1002/2015GL 065864.
  21. McLandress C., Shepherd T. Impact of climate change on stratospheric sudden warmings as simulated by the Canadian Middle Atmosphere Model // J. Clim. 2009. V. 22. P. 5449–5463. DOI: 10.1175/2009JCLI3069.1.
  22. Bell C., Gray L., Kettleborough J. Changes in Northern Hemisphere stratospheric variability under increased CO2 concentrations // Q. J. R. Meteorol. Soc. 2010. V. 136. P. 1181–1190. DOI: 10.1002/qj.633.
  23. Vorob'eva V.V., Volodin E.M. Issledovanie struktury i predskazuemosti pervoi mody izmenchivosti v stratosfere na osnove klimaticheskoi modeli IVM RAN // Meteorol. i gidrol. 2018. N 11. P. 41–48.
  24. Mitchell D., Charlton-Perez A., Gray L. The nature of Arctic polar vortices in chemistry–climate models // Q. J. Roy. Meteorol. Soc. 2012b. V. 138. P. 1681–1691. DOI: 10.1002/qj.1909.
  25. Ayarzagüena B., Langematz U., Meul S. The role of climate change and ozone recovery for the future timing of major stratospheric warmings // Geophys. Res. Lett. 2013. V. 40. P. 2460–2465. DOI: 10.1002/grl.50477.
  26. Zhang L., Chen Q. Analysis of the variations in the strength and position of stratospheric sudden warming in the past three decades // Atmos. Ocean. Sci. Lett. 2019. V. 12. P. 147–154. DOI: 10.1080/16742834.2019. 1586267.
  27. Zhang Y., Ren Y. Statistical characteristics and long-term variations of major sudden stratospheric warming events // J. Meteor. Res. 2021. V. 35, N 3. P. 416–427. DOI: 10.1007/s13351-021-0166-3.
  28. Kuttippurath J., Nikulin G.A comparative study of the major sudden stratospheric warmings in the Arctic winters 2003/2004–2009/2010 // Atmos. Chem. Phys. 2012. V. 12, N 17. P. 8115–8129. DOI: 10.5194/acp-12-8115-2012.
  29. Manney G.K., Kruger J.L., Sabutis S.A., Pawson S. The remarkable 2003–2004 winter and other recent warm winters in the Arctic stratosphere since the late 1990s // J. Geophys. Res. 2005. V. 110. P. D04107. DOI: 10.1029/2004JD005367.
  30. Mitchell D., Charlton-Perez A., Gray L. Characterizing the variability and extremes of the stratospheric polar vortices using 2D moment analysis // J. Atmos. Sci. 2011. V. 8. P. 1194–1213. DOI: 10.1175/2010JAS3555.1.
  31. Domeisen D. Estimating the frequency of sudden stratospheric warming events from surface observations of the North Atlantic Oscillation // J. Geophys. Res.: Atmos. 2019. V. 124, N 3. P. 180–3194. DOI: 10.1029/2018JD030077.
  32. Hersbach H., Bell B., Berrisford P., Hirahara Sh., Horányi A., Muñoz-Sabater J., Nicolas J., Peubey C., Radu R., Schepers D., Simmons A., Soci C., Abdalla S., Abellan X., Balsamo G., Bechtold P., Biavati G., Bidlot J., Bonavita M., de Chiara G., Dahlgren P., Dee D., Diamantakis M., Dragani R., Flemming J., Forbes R., Fuentes M., Geer A., Haimberger L., Healy S., Hogan R.J., Hólm E., Janisková M., Keeley S., Laloyaux P., Lopez Ph., Lupu C., Radnoti G., de Rosnay P., Rozum I., Vamborg F., Villaume S., Thépaut J.-N. The ERA5 Global Reanalysis // Q. J. R. Meteorol. Soc. 2020. V. 146. P. 1999–2049. DOI: 10.1002/qj.3803.
  33. Hoskins J., McIntyre M., Robertson A. On the use and significance of isentropic potential vorticity maps // Q. J. R. Meteorol. Soc. V. 111. P. 877–946. DOI: 10.1002/qj.49711147002, 1985.
  34. Millán L., Manney G., Lawrence D. Reanalysis intercomparison of potential vorticity and potential-vorticity-based diagnostics // Atmos. Chem. Phys. 2021. V. 21. P. 5355–5376. DOI: 10.5194/acp-21-5355-2021.
  35. White I., Garfinkel C., Cohen J., Jucker M., Rao J. The impact of split and displacement sudden stratospheric warmings on the troposphere // J. Geophys. Res.: Atmos. 2021. V. 126. DOI: 10.1029/2020JD033989.
  36. Antokhina O., Antokhin P., Devyatova E., Martynova Y. 2004–2016 wintertime atmospheric blocking events over Western Siberia and their effect on surface temperature anomalies // Atmosphere. 2018. V. 9, N 72. DOI: 10.3390/atmos9020072.