Vol. 36, issue 03, article # 3

Zemlyanov A. A., Minina O. V. The condition of collapse stopping during propagation of high-power femtosecond laser pulses in an optical medium. // Optika Atmosfery i Okeana. 2023. V. 36. No. 03. P. 179–187. DOI: 10.15372/AOO20230303 [in Russian].
Copy the reference to clipboard

Abstract:

The criterion for stopping the intensity collapse is established in the approximation of the nonlinear Schrödinger equation for the problem of self-focusing of high-power femtosecond laser radiation in an optical medium. Using propagation of a femtosecond laser pulse in air as an example, it is shown that the collapse stops when the role of diffraction increases due to a decrease in the radius of the laser beam, and occurs not at a point, but at an interval in front of the nonlinear focus, where the self-phase modulation of the radiation due to the plasma nonlinearity prevails over the Kerr effect. The result (collapse stop criterion) makes it possible to take into account the features of the nonlinear activity of various optical media during the propagation of high-power femtosecond laser pulses; in particular, the role of nonlinear absorption is determined under the conditions considered.
 

Keywords:

femtosecond laser pulses, air, self-focusing, diffraction, intensity collapse, absorption

References:

  1. Askar'yan G.A. Vozdeistvie gradienta polya intensivnogo elektromagnitnogo lucha na elektrony i atomy // Zhurn. eksperimental'noi i teoreticheskoi fiziki. 1962. V. 42, N 6. P. 1567–1570.
  2. Pilipetskii N.F., Rustamov A.R. Nablyudenie samofokusirovki sveta v zhidkostyakh // Pis'ma v ZhETF. 1965. V. 2, N 2. P. 88–90.
  3. Zakharov V.E., Kuznetsov E.A. Solitony i kollapsy: dva stsenariya evolyutsii nelineinykh volnovykh sistem // Uspekhi fiz. nauk. 2012. V. 182, iss. 6. P. 569–592. 4
  4. Lugovoi V.N., Prokhorov A.M. Teoriya rasprostraneniya moshchnogo lazernogo izlucheniya v nelineinoi srede // Uspekhi fiz. nauk. 1973. V. 111, iss. 2. P. 203–247.
  5. Chekalin S.V., Kandidov V.P. Ot samofokusirovki svetovykh puchkov – k filamentatsii lazernykh impul'sov // Uspekhi fiz. nauk. 2013. V. 183, iss. 2. P. 133–152.
  6. Bejot P., Kasparian J., Henin S., Loriot V., Vieillard T., Hertz E., Faucher O., Lavorel B., Wolf J.-P. Higher-order Kerr terms allow ionization-free filamentation in gases // Phys. Rev. Lett. 2010. V. 104. P. 103903-1–4.
  7. Kosareva O., Daigle J.-F., Panov N., Wang T., Hosseini S., Yuan S., Roy G., Makarov V., Chin S.L. Arrest of self-focusing collapse in femtosecond air filaments: higher order Kerr or plasma defocusing? // Opt. Let. 2011. V. 36, N 7. P. 1035–1037.
  8. Geints Yu.E., Zemlyanov A.A., Minina O.V. Дифракционно-лучевая оптика филаментации: I. Формализм дифракционных лучей и световых трубок // Оптика атмосф. и океана. 2018. V. 31, N 5. P. 364–371; Geints Yu.E., Zemlyanov A.A., Minina O.V. Diffraction-beam optics of filamentation: I – Formalism of diffraction beams and light tubes // Atmos. Ocean. Opt. 2018. V. 31, N 6. Р. 611–618.
  9. Fraiman G.M. Asymptotic stability of manifold of self-similar solutions in self-focusing // JETP. 1985. V. 61, N 2. P. 228–233.
  10. Landman M.J., Papanicolaou G.C., Sulem C., Sulem P.L. Rate of blowup for solution of the nonlinear Schrodinger equation at critical dimension // Phys. Rev. A. 1988. V. 38. P. 3837–3843.
  11. Mesurier B.J., Papanicolaou G.C., Sulem C., Sulem P.L. Local structure on the self-focusing singularity of the cubic Schrodinger equation // Phys. D. 1988. V. 32. P. 210–226.
  12. Self-focusing: Past and Present. Fundamentals and Prospects / R.W. Boyd, S.G. Lukishova, Y.R. Shen (eds.). Berlin: Springer, 2008. 605 р.
  13. Vitkovskii V.E., Fedoruk M.P. Chislennoe issledovanie svoistv reshenii nelineinogo uravneniya SHredingera pri rasprostranenii lazernykh impul'sov v svetovodakh // Vychislitel'nye tekhnologii. 2008. V. 13, N 6. P. 40–49.
  14. Kandidov V.P., Fedorov V.Yu., Tverskoi O.V., Kosareva O.G., Chin S.L. Nasyshchenie intensivnosti v filamente femtosekundnogo lazernogo izlucheniya // Kvant. elektron. 2011. V. 41, N 4. P. 382–386.
  15. Couairon А., Bergé L. Light filaments in air for ultraviolet and infrared wavelengths // Phys. Rev. Lett. 2002. V. 88, N 13. P. 135003-1-4.
  16. Kandidov V.P., Shlenov S.A., Kosareva O.G. Filamentatsiya moshchnogo femtosekundnogo lazernogo izlucheniya // Kvant. elektron. 2009. V. 39, N 3. P. 205–228.
  17. Geints Yu.E., Zemlyanov A.A., Minina O.V. Modelirovanie samofokusirovki femtosekundnykh lazernykh impul'sov v vozdukhe metodom difraktsionno-luchevykh trubok // Optika atmosf. i okeana. 2019. V. 32, N 2. P. 120–130; Geints Yu.E., Zemlyanov A.A., Minina O.V. Simulation of self-focusing of femtosecond laser pulses in air by the method of diffraction-beam tubes // Atmos. Ocean. Opt. 2019. V. 32, N 4. Р. 420–429.
  18. Luo Q., Yu J., Hosseini S.A., Liu W., Ferland B., Roy G., Chin S.L. Long-range detection and length estimation of light filaments using extra-attenuation of terawatt femtosecond laser pulses propagating in air // Appl. Opt. 2005. V. 44, N 3. Р. 391–397.
  19. Mishima K., Hayashi M., Yi J., Lin S.H., Selzle H.L., Schlag E.W. Generalization of Keldysh’s theory // Phys. Rev. A 2002. V. 66, N 3. Р. 033401-1–12.
  20. Geints Yu.E., Zemlyanov A.A. Harakteristiki filamentov pri rasprostranenii moshchnogo femtosekundnogo lazernogo izlucheniya v vozdukhe i vode: I. Kachestvennyi analiz // Optika atmosf. i okeana. 2010. V. 23, N 9. P. 749–756; Geints Yu.E., Zemlyanov A.A. Characteristics of filaments during high-power femtosecond laser radiation propagation in air and water: I. Qualitative analysis // Atmos. Ocean. Opt. 2011. V. 24, N 2. Р. 144–151.
  21. Perelomov A.M., Popov V.S., Terent'ev M.V. Ionizatsiya atomov v peremennom elektricheskom pole // ZhETF. 1966. V. 50, iss. 5. P. 1393–1397.
  22. Loriot V., Hertz E., Faucher O., Lavorel B. Measurement of high order Kerr refractive index of major air components // Opt. Express. 2009. V. 17, N 16. P. 13429–13434.