Vol. 36, issue 01, article # 6

Shamanaev V. S., Lisenko A. A. Experimental determination of the laser radiation extinction coefficient for inhomogeneous sea water in the subsurface layer from airborne polarization lidar signals. // Optika Atmosfery i Okeana. 2023. V. 36. No. 01. P. 42–48. DOI: 10.15372/AOO20230106 [in Russian].
Copy the reference to clipboard

Abstract:

Results of experimental determination of the laser radiation extinction index by the gradient method from the depth profiles of the airborne polarization lidar return signal power for clear and coastal sea water in the subsurface layer are presented. Based on synchronous measurements of the polarized and depolarized signal components with the “Makrel” lidar operating at a wavelength of 532 nm, laser radiation extinction coefficients were estimated. It has been experimentally demonstrated that the polarized and depolarized lidar return signal components have different seawater extinction indices, and the difference can reach several ten percent. The depth profiles of the laser radiation extinction indices retrieved from these signal components for two series of lidar measurements are given. Such an integrated approach expands the possibilities of remote hydrooptical sensing.

Keywords:

airborne polarization lidar, laser radiation extinction index, Monte Karlo method

References:

  1. Levin I.M., Radomysl'skaya T.M. Otsenka gidroopticheskih harakteristik po glubine vidimosti diska Sekki // Izv. RAN. Fizika atmosf. i okeana. 2012. V. 48, N 2. P. 239–246.
  2. Gluhovets D.I., Salyuk P.A., Sheberstov S.V., Vazyulya S.V., Saling I.V., Stepochkin I.E. Vosstanovlenie polnogo kompleksa opticheskih harakteristik dlya otsenki teplosoderzhaniya v yuzhnoj chasti Barentseva morya v june 2021 year // Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa. 2021. V. 18, N 5. P. 214–225.
  3. Irish J.L., McClung J.K., Lillycrop W.J. Airborne lidar bathymetry – the SHOALS system // Int. Navigation Assoc. PIANC Bull. 2000. V. 103. P. 43–53.
  4. Guenther G.C., Brooks M., LaRocque P.E. New capabilities of the ‘Shoals’ airborne lidar bathymetry // Remote Sens. Environ. 2000. V. 73, N 2. P. 247–255.
  5. Potekaev A.I., Lisenko A.A., Shamanaev V.S. Statisticheskij analiz potentsiala batimetricheskogo lidara s vremyaproletnym matrichnym SPAD-fotopriemnikom // Izv. vuzov. Fizika. 2019. V. 62, N 9. P. 165–170.
  6. Lisenko A.A., Potekaev A.I., Shamanaev V.S. Statisticheskie otsenki signalov lidara s matrichnym fotopriemnikom, otrazhennyh ot dna morya // Izv. vuzov. Fizika. 2017. V. 60, N 6. P. 122–127.
  7. Roddewig M.R., Pust N.J., Churnside J.H., Shaw J.A. Dual polarization airborne lidar for freshwater fisheries management and research // Opt. Eng. 2017. V. 56. P. 031221.
  8. Churnside J.H., Wilson J.J., Tatarskii V.V. Airborne lidar for fisheries application // Opt. Eng. 2001. V. 40, N 3. P. 406–414.
  9. Shamanaev V.S. Obnaruzhenie kosyakov morskih ryb s pomoshch'yu metoda polyarizatsionnogo lazernogo zondirovaniya // Optika atmosf. i okeana. 2018. V. 31, N 4. P. 268–274
  10. Churnside J.H., Marchbanks R.D., Lee J.H., Shaw J.A., Weidmann A., Donaghay P.L. Airborne lidar detection and characterization of internal waves in a shallow fjord // J. Appl. Remote Sens. 2012. V. 6. P. 3611.
  11. Leifer I., Lehr W.J., Simecek-Beatty D. S., Bradley E., Clark R., Dеnnison Ph., Yongxiang Hu, Matheson S., Jones C.E., Holt B., Reif M., Roberts D.A., Svejkovsky J., Swayze G., Wozencraft J. State of the art satellite and airborne marine oil spill remote sensing: Application to the BP Deepwater Horizon oil spill // Remote Sens. Environ. 2012. V. 124. P. 185–209.
  12. Liu H., Chen P., Mao Z., Delu P., He Y. Subsurface plankton layers observed from airborne lidar in Sanya Bay, South China Sea // Opt. Express. 2018. V. 26. P. 29134–29147.
  13. Churnside J.H., Marchbanks R.D. Subsurface plankton layers in the Arctic Ocean // Geophys. Res. Lett. 2015. V. 42. P. 4896–4902.
  14. Churnside J.H. Review of profiling oceanographic lidar // Opt. Eng. 2014. V. 53. N 5. P. 051405. DOI: 10.1117/1.OE.53.5.051405.
  15. Lee J.H., Churnside J.H., Marchbanks R.D., Donaghay P.L., Sullivan J.M. Oceanographic lidar profiles compared with estimates from in situ optical measurements // Appl. Opt. 2013. V. 52, N 4. P. 786–794.
  16. Shamanaev V.S. Gidroopticheskie signaly polyarizatsionnogo samoletnogo lidara pri zondirovanii odnorodnoj tolshchi vody // Optika atmosf. i okeana. 2020. V. 33, N 7. P. 516–521. DOI: 10.15372/AOO20200703.
  17. Lisenko A.A., Shamanaev V.S. Statisticheskie otsenki vliyaniya indikatrisy rasseyaniya morskoj vody na harakteristiki signala gidroopticheskogo samoletnogo lidara // Izv. vuzov. Fizika. 2021. V. 64, N 7. P. 171–177.
  18. Churnside J.H., Donaghay P.L. Thin scattering layers observed by airborne lidar // ICES J. Marine Science. 2009. V. 66, N 4. P. 778–789.
  19. Shamanaev V.S. Samoletnye lidary IOA SO RAN dlya zondirovaniya plotnyh sred // Optika atmosf. i okeana. 2015. V. 28, N 3. P. 260–266.
  20. Petzold T.J. Volume Scattering Functions for Selected Ocean Waters. SIO Ref. 72–78. San Diego: Institute of Oceanography, Visibility Laboratory, 1972. 79 p.