Vol. 35, issue 12, article # 7

Sin’kevich A. A., Kurov A. B., Mikhailovskii Yu. P., Toropova M. L., Veremei N. E. A study of thunderstorm characteristics in Northwest Russia using neural networks. // Optika Atmosfery i Okeana. 2022. V. 35. No. 12. P. 1008–1014. DOI: 10.15372/AOO20221207 [in Russian].
Copy the reference to clipboard

Abstract:

The paper presents the results of analysis of radar characteristics of clouds, including the polarization ones, and lightning data for June 9 2020, in the vicinity of Saint-Petersburg. The characteristics of thunderstorm and clouds without lightning are compared. Statistical difference between two groups of clouds has been found. The regression analysis of the correlation between the lightning flash rate and radar characteristics of clouds is performed using neural networks. The impact of these parameters on lightning flash rate has been estimated. A mathematical equation for calculating the lightning flash rate using the differential reflectivity maximum and the cloud volume with the reflectivity equal to 35 dBZ is derived.

Keywords:

thunderstorm, lightning, radar characteristics, regression analysis, neural networks

References:

  1. Sin’kevich A.A., Mikhailovskiy Yu.P., Toropova M.L., Popov V.B., Starykh D.S., Dovgalyuk Yu.A., Veremei N.E. Stroenie grozovogo oblaka so smerchem i zavisimost' chastoty molnij ot ego harakteristik // Optika atmosf. i okeana. 2020. V. 33, N 9. P. 705–709. DOI: 10.15372/AOO20200907; Sin’kevich A.A., Mikhailovskiy Yu.P., Toropova M.L., Popov V.B., Starykh D.S., Dovgalyuk Yu.A., Veremei N.E. Thunderstorm with waterspout structure and the dependence lightning frequency on its characteristics // Atmos. Ocean. Opt. 2020. V. 33, N 6. P. 645–649. DOI: 10.1134/S1024856020060226.
  2. Qie X., Zhang Y. A review of atmospheric electricity research in China from 2011 to 2018 // Adv. Atmos. Sci. 2019. V. 36, N 9. P. 994–1014. DOI: 10.1007/ s00376-019-8195-x.
  3. Cecil D.J., Goodman S.J., Boccippio D.J., Zipser E.J., Nesbitt S.W. Three years of TRMM precipitation features. Part I: Radar, radiometric, and lightning characteristics // Mon. Weather Rev. 2005. V. 133, N 3. P. 543–566. DOI: 10.1175/MWR-2876.1.
  4. Saunders C.P.R., Peck S.L. Laboratory studies of the influence of the rime accretion rate on charge transfer during crystal/graupel collisions // J. Geophys. Res.: Atmos. 1998. V. 103, D12. P. 13949–13956. DOI: 10.1029/97JD02644.
  5. Sin’kevich A.A., Popov V.B., Abshaev A.M., Boe B.A., Pawar S.D., Mikhailovskii Yu.P., Toropova M.L., Gopalakrishnan V., Gekkieva Zh.M. Radiolokatsionnye harakteristiki konvektivnyh oblakov raznyh regionov pri perekhode v grozovuyu stadiyu // Optika atmosf. i okeana. 2020. V. 33, N 12. P. 932–936. DOI: 10.15372/AOO20201205; Sin’kevich A.A., Popov V.B., Abshaev A.M., Boe B.A., Pawar S.D., Mikhailovskii Yu.P., Toropova M.L., Gopalakrishnan V., Gekkieva Zh.M. Radar characteristics of convective clouds during transition to the cumulonimbus stage in different regions of the world // Atmos. Ocean. Opt. 2021. V. 34, N 2. P. 134–139. DOI: 10.1134/ S1024856021020081.
  6. Ushio T., Heckman S.J., Boccippio D.J., Christian H.J., Kawasaki Z.-I. A survey of thunderstorm flash rates compared to cloud top height using TRMM satellite data // J. Geophys. Res.: Atmos. 2001. V. 106, N D20. P. 24089–24095. DOI: 10.1029/2001JD900233.
  7. Pessi A.T., Businger S. Relationships among lightning, precipitation, and hydrometeor characteristics over the North Pacific Ocean // J. Appl. Meteorol. Climatol. 2009, V. 48, N 4. P. 833–848. DOI: 10.1175/ 2008JAMC1817.1.
  8. Zipser E.J., Lutz K.R. The vertical profile of radar reflectivity of convective cells: A strong indicator of storm intensity and lightning probability? // Mon. Weather Rev. 1994. V. 122, N 8. P. 1751–1759. DOI: 10.1175/1520-0493(1994)122<1751:TVPORR>2.0.CO;2.
  9. Fehr T., Dotzek N., Höller H. Comparison of lightning activity and radar-retrieved microphysical properties in EULINOX storms // Atmos. Res. 2005. V. 76, N 1–4. P. 167–189. DOI: 10.1016/j.atmosres.2004.11.027.
  10. Petersen W.A., Rutledge S.A. Regional variability in tropical convection: Observations from TRMM // J. Clim. 2001. V. 14, N 17. P. 3566–3586. DOI: 10.1175/1520-0442(2001)014<3566:RVITCO>2.0.CO;2.
  11. Baker M.B., Christian H.J., Latham J. A computatio­nal study of the relationships linking lightning frequency and other thundercloud parameters // Quart. J. Roy. Meteorol. Soc. 1995. V. 121, N 527. P. 1525–1548. DOI: 10.1002/qj.49712152703.
  12. Sin'kevich A.A., Mihajlovskij Yu.P., Matrosov S.Yu., Popov V.B., Snegurov V.S., Snegurov A.V., Dovgalyuk Yu.A., Veremej N.E. Svyaz' struktury konvektivnyh oblakov s chastotoj molnij po rezul'tatam radiofizicheskih izmerenij // Meteorol. gidrol. 2019. N 6. P. 37–51.
  13. Petersen W.A., Christian H.J., Rutledge S.A. TRMM observations of the global relationship between ice water content and lightning // Geophys. Res. Lett. 2005. V. 32, N 14. DOI: 10.1029/2005GL023236.
  14. Sin’kevich A.A., Popov V.B., Mikhailovskii Yu.P., Toropova M.L., Dovgalyuk Yu.A., Veremei N.E., Starykh D.S. Harakteristiki kuchevo-dozhdevogo oblaka s vodyanym smerchem nad Ladozhskim ozerom po dannym distantsionnyh izmerenij // Optika atmosf. i okeana. 2020. V. 33, N 2. P. 153–158. DOI: 10.15372/ AOO20200211; Sin’kevich A.A., Popov V.B., Mikhailovskii Yu.P., Toropova M.L., Dovgalyuk Yu.A., Veremei N.E., Starykh D.S. Characteristics of cumulonimbus with waterspout over Ladoga lake from remote measurements // Atmos. Ocean. Opt. 2020. V. 33, N 4. P. 387–392. DOI: 10.1134/S1024856020040156.
  15. Cornet C., Isaka H., Guillemet B., Szczap F. Neural network retrieval of cloud parameters of inhomogeneous clouds from multispectral and multiscale radiance data: Feasibility study // J. Geophys. Res.: Atmos. 2004. V. 109, N D12. DOI: 10.1029/2003JD004186.
  16. Wimmers A., Velden C., Cossuth J.H. Using deep learning to estimate tropical cyclone intensity from satellite passive microwave imagery // Mon. Weather Rev. 2019. V. 147, N 6. P. 2261–2282. DOI: 10.1175/ MWR-D-18-0391.1.
  17. McGovern A., Lagerquist R., Gagne D.J., Jergensen G.E., Elmore K.L., Homeyer C.R., Smith T. Making the black box more transparent: Understanding the physical implications of machine learning // Bull. Am. Meteorol. Soc. 2019. V. 100, N 11. DOI: 10.1175/ BAMS-D-18-0195.1.
  18. Andreeva E.S. Primenenie metodov nejroprogrammirovaniya dlya opredeleniya riskov opasnyh yavlenij pogody // Izv. vuzov. Sev.-Kavk. region. Estestv. nauki. 2008. N 5. P. 105–107.
  19. Chaharborj S.S., Borazjani M.M., Gheisari Y. Predic­ting climatic meteorological parameters by using the artificial dynamics neural networks: Case study, Bushehr City // J. Comput. Sci. Comput. Math. 2016. V. 6, N 4. DOI: 10.20967/jcscm.2016.04.005.
  20. Mihajlovskij Yu.P., Toropova M.L., Veremej N.E., Dovgalyuk Yu.A., Sin'kevich A.A., YAng Dzh., Lu Dzh. Dinamika elektricheskoj struktury kuchevo-dozhdevyh oblakov // Izv. vuzov. Radiofizika. 2021. V. 64, N 5. P. 341–353.
  21. Dolan B., Rutledge S.A., Lim S., Chandrasekar V., Thurai M. A robust C-band hydrometeor identification algorithm and application to a long-term polarimetric radar dataset // J. Appl. Meteorol. Climatol. 2013. V. 52, N 9. P. 2162–2186. DOI: 10.1175/JAMC-D-12-0275.1.
  22. Sal'man E.M. Kompleksnyj radiolokatsionnyj metod meteorologicheskogo obsluzhivaniya aviatsii // Tr. GGO. 1964. Issue 159. P. 24–34.
  23. Sin’kevich A., Boe B., Pawar S., Yang J., Abshaev A., Dovgaluk Y., Gekkieva J., Gopalakrishnan V., Kurov A., Mikhailovskii Y., Toropova M., Veremei N. Investigation of thundercloud features in different regions // Remote Sens. 2021. V. 13, N 16. DOI: 10.3390/rs13163216.
  24. Buechler D.E., Goodman S.J. Echo size and asymmetry: Impact on NEXRAD storm identification // J. Appl. Meteorol. Climatol. 1990. V. 29, N 9. P. 962–969. DOI: 10.1175/1520-0450(1990)029<0962:ESAAIO>2.0.CO;2.
  25. Gremillion M.S., Orville R.E. Thunderstorm characteristics of cloud-to-ground lightning at the Kennedy Space Center, Florida: a study of lightning initiation signatures as indicated by the WSR-88D // Weather Forecast. 1999. V. 14, N 5. P. 640–649. DOI: 10.1175/1520-0434(1999)014<0640:TCOCTG>2.0.CO;2.
  26. Vincent B.R., Carey L.D., Schneider D., Keeter K., Gonski R. Using WSR-88D reflectivity data for the prediction of cloud-to-ground lightning: A central North Carolina study // Natl. Wea. Dig. 2003. V. 27, N 1. P. 35–44.
  27. Yang Y.H., King P. Investigating the potential of using radar echo reflectivity to nowcast cloud-to-ground lightning initiation over southern Ontario // Weather Forecast. 2010. V. 25, N 4. P. 1235–1248. DOI: 10.1175/ 2010WAF2222387.1.
  28. Mosier R.M., Schumacher C., Orville R.E., Carey L.D. Radar nowcasting of cloud-to-ground lightning over Houston, Texas // Weather Forecast. 2011. V. 26, N 2. P. 199–212. DOI: 10.1175/ 2010WAF2222431.1.
  29. Kumjian M.R. Principles and applications of dual-polarization weather radar. Part I: Description of the polarimetric radar variables // J. Operational Meteor. 2013. V. 1, N 19. P. 226–242. DOI: 10.15191/nwajom. 2013.0119.
  30. Metodicheskie ukazaniya po ispol'zovaniyu informatsii doplerovskogo meteorologicheskogo radiolokatora DMRL-S v sinopticheskoj praktike. Tret'ya red. M., 2019. 129 p.