Vol. 35, issue 12, article # 5

Zаdvornykh I. V., Gribanov K. G., Zakharov V. I., Imasu R. Retrieval of HDO relative content in atmosphere from simultaneous GOSAT-2 measurements in the thermal and near-IR. // Optika Atmosfery i Okeana. 2022. V. 35. No. 12. P. 999–1003. DOI: 10.15372/AOO20221205 [in Russian].
Copy the reference to clipboard

Abstract:

In with paper we demonstrate the application of original method for solving the inverse problem of hyperspectral satellite sensing to retrieval of the vertical profile of HDO/H2O ratio in the Earth's atmosphere with the simultaneous use of thermal and near-IR spectra is described. This method is used to retrieve relative abundance of HDO isotopologue (dD) in atmospheric water vapor from measurements of TANSO-FTS IR spectrometer onboard GOSAT-2 satellite for the first time. Retrieved dD-values are compared with data obtained at ground-based TCCON measurement station in Karlsruhe, Germany. The simultaneous use of satellite spectra of outgoing atmospheric radiation in the thermal range and reflected solar radiation in the near-IR shows a higher correlation between monthly average dD satellite values of and ground-based data.

Keywords:

remote sensing, inverse problem, water vapor isotopologues, GOSAT-2

References:

  1. Ferronskij V.I., Polyakov V.A. Izotopiya gidrosfery Zemli. M.: Nauchnyj mir, 2009. 632 p.
  2. Dansgaard W. Stable isotopes in precipitation // Tellus. 1964. V. 16, N 4. P. 436–468.
  3. Galewsky J., Steen-Larsen H.C., Field R.D., Worden J., Risi C., Schneider M. Stable isotopes in atmospheric water vapor and applications to the hydrologic cycle // Rev. Geophys. 2016. V. 54, N 4. P. 809–865.
  4. Craig H. Standard for reporting concentrations of deuterium and oxygen-18 in natural waters // Science. 1961. V. 133. P. 1833–1834.
  5. Wunch D., Toon G., Blavier J-F., Washenfelder R., Notholt J., Connor B., Griffith D., Sherlock V., Wennberg P. The total carbon column observing network // Phil. Trans. R. Soc. A. 2011. V. 369. P. 2087–2112.
  6. Gribanov K.G., Zakharov V.I., Beresnev S.A., Rokotyan N.V., Poddubny V.A., Imasu R., Chistyakov P.A., Skorik G.G., Vasin V.V. Zondirovanie HDO/H2O v atmosfere Urala metodom nazemnyh izmerenij IK-spektrov solnechnogo izlucheniya s vysokim spektral'nym razresheniem // Optika atmosf. i okeana. 2011. V. 24, N 2. P. 124–127; Gribanov K.G., Zakharov V.I., Beresnev S.A., Rokotyan N.V., Poddubny V.A., Imasu R., Chistyakov P.A., Skorik G.G., Vasin V.V. Sensing HDO/H2O in the Ural’s atmosphere using ground-based measurements of IR solar radiation with a high spectral resolution // Atmos. Ocean. Opt. 2011. V. 24, N 4. P. 369–372.
  7. Gribanov K.G., Zakharov V.I. O vozmozhnosti monitoringa sootnosheniya soderzhanij HDO/H2O v atmosfere, ispol'zuya nablyudeniya iz kosmosa uhodyashchego teplovogo izlucheniya // Optika atmosf. i okeana. 1999. V. 12, N 9. P. 858–860.
  8. Lee X., Sargent S., Smith R., Tanner B. In situ measurement of the water vapor 18O/16O isotope ratio for atmospheric and ecological applications // J. Atmos. Ocean. Tech. 2005. V. 22. P. 555–565.
  9. Zakharov V.I., Imasu R., Gribanov K.G., Hoffmann G., Jouzel J. Latitudinal distribution of the deuterium to hydrogen ratio in the atmospheric water vapor retrieved from IMG/ADEOS data // Geophys. Res. Lett. 2004. V. 31, N 12. P. 723–726.3.
  10. Schneider A., Borsdorff T., van de Brugh J., Hu H., Landgraf J. A full-mission data set of H2O and HDO columns from SCIAMACHY 2.3 μm reflectance measurements // Atmos. Meas. Tech. 2018. V. 11. P. 3339–3350.
  11. Schneider M., Hase F. Optimal estimation of tropospheric H2O and dD with IASI/METOP // Atmos. Chem. Phys. 2011. V. 11. P. 11207–11220.
  12. Frankenberg C., Wunch D., Toon G., Risi C., Scheepmaker R., Lee J.-E., Wennberg P., Worden J. Water vapor isotopologue retrievals from high-resolution GOSAT shortwave infrared spectra // Atmos. Meas. Tech. 2013. V. 6. P. 263–274.
  13. Suto H., Kataoka F., Kikuchi N., Knuteson R., Butz A., Haun M., Buijs H., Shiomi K., Imai H., Kuze A. Thermal and near-infrared sensor for carbon observation Fourier transform spectrometer-2 (TANSO-FTS-2) on the Greenhouse gases Observing SATellite-2 (GOSAT-2) during its first year in orbit // Atmos. Meas. Tech. 2021. V. 14, N 3. P. 2013–2039.
  14. Gribanov K.G., Zakharov V.I., Tashkun S.A., Tyuterev Vl.G. A New software tool for radiative transfer calculations and its application to IMG/ADEOS data // J. Quant. Spectrosc. Radiat. Transfer. 2001. V. 68, N 4. P. 435–451.
  15. Zadvornykh I.V., Gribanov K.G., Zakharov V.I., Imasu R. Programmnoe obespechenie dlya modelirovaniya perenosa izlucheniya teplovogo i blizhnego IK-diapazonov v atmosfere s uchetom mnogokratnogo rasseyaniya // Optika atmosf. i okeana. 2017. V. 30, N 2. P. 128–133; Zadvornykh I.V., Gribanov K.G., Zakharov V.I., Imasu R. Radiative transfer code for the thermal and near-infrared regions with multiple scattering // Atmos. Ocean. Opt. 2017. V. 30, N 4. P. 305–310.
  16. Spurr R.J. VLIDORT: A linearized pseudo-spherical vector discrete ordinate radiative transfer code for forward model and retrieval studies in multilayer multiple scattering media // J. Quant. Spectrosc. Radiat. Transfer. 2006. V. 102, N 2. P. 316–342.
  17. Rogers C.D. Inverse Methods for Atmospheric Sounding. Theory and Practice. Singapore: World Scientific, 2000. 206 p.
  18. Boesch H., Deutscher N.M., Warneke T., Byckling K., Cogan A.J., Griffith D.W.T., Notholt J., Parker R.J., Wang Z. HDO/H2O ratio retrievals from GOSAT // Atmos. Meas. Tech. 2013. V. 6. P. 599–612.
  19. Zadvornykh I.V., Gribanov K.G., Denisova N.Yu., Zakharov V.I., Imasu R. Metod opredeleniya vertikal'nogo profilya otnosheniya kontsentratsij HDO/H2O v atmosfere iz sputnikovyh spektrov, izmerennyh odnovremenno v dvuh spektral'nyh diapazonah: teplovom i blizhnem IK // Optika atmosf. i okeana. 2020. V. 33, N 11. P. 831–835; Zadvornykh I.V., Gribanov K.G., Denisova N.Yu., Zakharov V.I., Imasu R. Method for retrieval of the HDO/H2O ratio vertical profile in the atmosphere from satellite spectra simultaneously measured in thermal and near-IR ranges // Atmos. Ocean. Opt. 2021. V. 34, N 2. P. 81–86.