Vol. 35, issue 08, article # 7

Shul’ga T. Ya., Verzhevskaiia L. V., Medvedeva A. V., Svishcheva I. A. Assessment of the distribution of suspended matter according to bio-optical indices, taking into account the influence of hydrometeorological factors in the coastal zone of the Crimea. // Optika Atmosfery i Okeana. 2022. V. 35. No. 08. P. 638–644. DOI: 10.15372/AOO20220807 [in Russian].
Copy the reference to clipboard

Abstract:

The study shows a possibility of practical application of remote sensing data for digital marking and determination of the areas with a high content of suspended matter in sea coastal waters. Using the example of the region at the southwestern coast of Crimea, the relationship between seasonal and domestic winds and cases of increased suspended matter content is shown based on data of high- and medium-resolution optical satellite sensors in 2017–2019. The contribution of continental runoff depends on season; it is weaker compared to the action of the wind. The approach suggested can be useful for prompt mapping of the dynamics of suspended matter based on satellite observations from several sources.

Keywords:

remote sensing data, water pollution, regional atmospheric reanalysis, bio-optical index, suspended matter, Black Sea, Crimea

Figures:

References:

  1. Sovga E., Pasynkov A., Andreeva O. Ekologicheskoe sostoyanie pribrezhnyh i morskih territorij Kryma // Ekol. bezopasnost' pribrezhnoj i shel'fovoj zon morya. 2011. V. 22. P. 169–180.
  2. Andreeva O.A. Osobennosti landshaftno-geohimicheskih uslovij i ekologicheskogo sostoyaniya pribrezhno-morskih territorij Ukrainy // Geopolitika i ekogeodinamika regionov. 2010. V. 1. P. 75–84.
  3. Manzo C., Federica B., Luca Z., Ernesto B.V., Claudia G., Mariano B., Cristiana B. Spatio-temporal analysis of prodelta dynamics by means of new satellite generation: The case of Po river by Landsat-8 data // Int. J. Appl. Earth Observ. Geoinform. 2018. V. 66. P. 210–225. DOI: 10.1016/j.jag.2017.11.012.
  4. Hestir E.L., Brando V.E., Bresciani M., Giardino C., Matta E., Villa P., Dekker A.G. Measuring freshwater aquatic ecosystems: The need for a hyperspectral global mapping satellite mission // Remote Sens. Environ. 2015. V. 167. P. 181–195. DOI: 10.1016/j.rse.2015.05.023.
  5. Morel A., Prieur L. Analysis of variations in ocean color // Limnol. Oceanograph. 1977. V. 22, N 4. P. 709–722. DOI: 10.4319/lo.1977.22.4.0709.
  6. Kopelevich O., Burenkov V., Sheberstov S., Vazyulya S., Zavialov S. Bio-optical characteristics of the Russian seas from satellite ocean color data of 1998–2010 // Proc. of the VI International International Conference “Current Problems in Optics of Natural Waters”. St.-Petersburg, 2011. P. 181–182.
  7. Suslin V., Churilova T. A regional algorithm for separating light absorption by chlorophyll-a and coloured detrital matter in the Black Sea, using 480–560 nm bands from ocean colour scanners // Int. J. Remote Sens. 2016. V. 37, N 18. P. 4380–4400. DOI: 10.1080/ 01431161.2016.1211350.
  8. Shul'ga T.Ya., Suslin V.V. Issledovanie evolyutsii passivnoj primesi v poverhnostnom sloe Azovskogo morya na osnove usvoeniya dannyh skanera MODIS-Aqua v gidrodinamicheskuyu model' // Fundamentalnaya i Prikladnaya Gidrofizika. 2018. V. 11, N 3. P. 73–80. DOI: 10.7868/S2073667318030097.
  9. Rostovtseva V.V., Goncharenko I.V., Konovalov B.V. Bioopticheskie svojstva poverhnostnyh vod oz. Issyk-Kul' po dannym operativnogo zondirovaniya s borta sudna passivnym opticheskim kompleksom EMMA // Optika atmosf. i okeana. 2020. V. 33, N 2. P. 113–118. DOI: 10.15372/AOO20200205; Rostovtseva V.V., Goncharenko I.V., Konovalov B.V. Biooptical properties of near-surface waters in Lake Issyk-Kul from operational ship-based sensing by passive optical complex EMMA // Atmos. Ocean. Opt. 2020. V. 33, N 4. P. 340–346.
  10. Shul'ga T.Ya., Suslin V.V. Chislennoe issledovanie protsessov evolyutsii zagryaznenij v Azovskom more s ispol'zovaniem dannyh sputnikovyh nablyudenij // Morskoj gidrofizicheskij zhurnal. 2017. V. 6. P. 40–52. DOI: 10.22449/0233-7584-2017-6-40-52.
  11. Min'kovskaya R.Ya. Otsenka sostoyaniya morskih limanov rek Sevastopol'skogo regiona // Tr. Gosudarstvennogo okeanograficheskogo instituta. 2018. V. 219. P. 152–173.
  12. NASA Goddard Space Flight Center, Ocean Ecology Laboratory, Ocean Biology Processing Group. Moderate-resolution Imaging Spectroradiometer (MODIS) Aqua Ocean Color Data; 2018 Reprocessing. NASA OB.DAAC, Greenbelt, MD, USA. DOI: 10.5067/AQUA/MODIS/ L2/OC/2018. Accessed on 04/26/2022.
  13. NASA Goddard Space Flight Center, Ocean Ecology Laboratory, Ocean Biology Processing Group. Moderate-resolution Imaging Spectroradiometer (MODIS) Terra Ocean Color Data; 2018 Reprocessing. NASA OB.DAAC, Greenbelt, MD, USA. DOI: 10.5067/TERRA/MODIS/ L2/OC/2018.
  14. Kallos G., Nickovic S., Jovic D., Kakaliagou O., Papadopoulos A., Misirlis N., Boukas L., Mimikou N., Sakellaridis G., Papageorgiou J., Anadranistakis E., Manousakis M. The regional weather forecasting system SKIRON and its capability for forecasting dust uptake and transport // Proc. of the WMO Conference Dust Storms. Damascus. 1997. P. 1–6.
  15. Chavez P.S. An improved dark-object subtraction technique for atmospheric scattering correction of multispectral data // Remote Sens. Environt. 1988. V. 24, N 3. P. 459–479. DOI: 10.1016/0034-4257(88)90019-3.
  16. Bertani I., Steger C.E., Obenour D.R., Fahnenstiel G.L., Bridgeman T.B., Johengen T.H., Sayers M.J., Shuchman R.A., Scavia D. Tracking cyanobacteria blooms: Do different monitoring approaches tell the same story? // Sci. Total Environ. 2017. V. 575. P. 294–308. DOI: 10.1016/j.scitotenv.2016.10.023.
  17. Ezhegodnyj doklad o sostoyanii i ob ohrane okruzhayushchej sredy goroda Sevastopolya za 2019 year g. Sevastopol'. 2020. 306 p.