Vol. 35, issue 08, article # 5

Gurentsov E. V., Eremin A. V., Kolotushkin R. N. The choice of optical properties of soot particles for description of solar radiation absorption in the atmosphere and on the Earth's surface. // Optika Atmosfery i Okeana. 2022. V. 35. No. 08. P. 626–631. DOI: 10.15372/AOO20220805 [in Russian].
Copy the reference to clipboard

Abstract:

New data are presented on the dependence of the function of the refractive index of soot particles on their average size in the visible and near-IR spectral regions found by the method of laser-induced incandescence. The sunlight absorption by soot aerosols is currently calculated with a value of the refractive index function of about 0.2 at a wavelength of 550 nm regardless of the origin of soot particles and their variability. The new data confirm the dependence of the optical properties of soot on the size of particles and conditions of their formation, which is related to the degree of their graphitization. It is shown that the solar radiation absorption by soot aerosol can double as compared to the commonly accepted values if taking into account the particle size distribution.

Keywords:

soot particles, absorption of solar radiation, refractive index function, average size of soot particles

References:

  1. Bond T.C., Doherty S.J., Fahey D.W., Forster P.M., Berntsen T., DeAngelo B.J., Flanner M.G., Ghan S., Kärcher B., Koch D., Kinne S., Kondo Y., Quinn P.K., Sarofim M.C., Schultz M.G., Schulz M., Venkataraman C., Zhang H., Zhang S., Bellouin N., Guttikunda S.K., Hopke P.K., Jacobson M.Z., Kaiser J.W., Klimont Z., Lohmann U., Schwarz J.P., Shindell D., Storelvmo T., Warren S.G., Zender C.S. Bounding the role of black carbon in the climate system: A scientific assessment // J. Geophys. Res.: Atmos. 2013. V. 118. P. 5380–5552.
  2. Chýlek P., Ramaswamy V., Srivastava V. Albedo of soot-contaminated snow // J. Geophys. Res. 1983. V. 88, N C15. P. 10837–10843.
  3. Ginzburg A.S., Gubanova D.P., Minashkin V.M. Vliyanie estestvennyh i antropogennyh aerozolej na global'nyj i regional'nyj klimat // Ros. him. zhurn. 2008. V. LII, N 5. P. 112–119.
  4. Schulz C., Kock B.F., Hofmann M., Michelsen H.A., Will S., Bougie B., Suntz R., Smallwood G. Laser-induced incandescence: Recent trends and current questions // Appl. Phys. B. 2006. V. 83. P. 333–354.
  5. Gurentsov E.V., Eremin A.V., Miheeva E.Yu. Issledovanie termodinamicheskih svojstv uglerodnyh nanochastits metodom lazernogo nagreva // Teplofizika vysokih temperatur. 2017. V. 55, N 5. P. 737–745.
  6. Gurentsov E. A review on determining the refractive index function, thermal accommodation coefficient and evaporation temperature of light absorbing nanoparticles suspended in gas the phase using the laser-induced incandescence // Nanotechnol. Rev. 2018. V. 7. P. 583–604.
  7. Snelling D.R., Liu F., Smallwood G.J. Determination of the soot absorption function and thermal accommodation coefficient using low-fluence LII in a laminar coflow ethylene diffusion flame // Combust. Flame. 2004. V. 136. P. 180–190.
  8. Snelling D., Thomson K., Liu F., Smallwood G. Comparison of LII derived soot temperature measurements with LII model predictions for soot in a laminar diffusion flame // Appl. Phys. B. 2009. V. 96. P. 657–669.
  9. Bladh H., Johnsson J., Olofsson N.-E., Bohlin A., Bengtsson P.-E. Optical soot characterization using two-color laser-induced incandescence (2C-LII) in the soot growth region of a premixed flat flame // Proc. Combust. Inst. 2011. V. 33. P. 641–648.
  10. Olofsson N.-E., Simonsson J., Török S., Bladh H., Bengtsson P.-E. Evolution of properties for aging soot in premixed flat flames studied by laser-induced incandescence and elastic light scattering // Appl. Phys. B. 2015. V. 119. P. 669–683.
  11. Bejaoui S., Batut S., Therssen F., Lamoureux N., Desgroux P., Liu F. Measurements and modeling of laser-induced incandescence of soot at different heights in a flat premixed flame // Appl. Phys. B. 2015. V. 118. P. 449–469.
  12. Eremin A.V., Gurentsov E.V., Popova E., Priemchenko K. Size dependence of complex refractive index function of growing nanoparticles // Appl. Phys. B. 2011. V. 104. P. 285–295.
  13. Therssen E., Bouvier Y., Schoemaecker-Moreau C., Mercier X., Desgroux P., Ziskind M., Focsa C. Determination of the ratio of soot refractive index function E(m) at the two wavelengths 532 and 1064 nm by laser induced incandescence // Appl. Phys. B. 2007. V. 89. P. 417–427.
  14. Michelsen H.A., Schrader P.E., Goulay F. Wavelength and temperature dependences of the absorption and scattering cross sections of soot // Carbon. 2010. V. 48. P. 2175–2191.
  15. López-Yglesias X., Schrader P.E., Michelsen H.A. Soot maturity and absorption cross sections // J. Aerosol Sci. 2014. V. 75. P. 43–64.
  16. Yon J., Lemaire R., Therssen E., Desgroux P., Coppalle A., Ren K.F. Examination of wavelength dependent soot optical properties of diesel and diesel/rapeseed methyl ester mixture by extinction spectra analysis and LII measurements // Appl. Phys. B. 2011. V. 104. P. 253–271.
  17. Cléon G., Amodeo T., Faccinetto A., Desgroux P. Laser induced incandescence determination of the ratio of the soot absorption functions at 532 nm and 1064 nm in the nucleation zone of a low pressure premixed sooting flame // Appl. Phys. B. 2011. V. 104. P. 297–305.
  18. Bejaoui S., Lemaire R., Desgroux P., Therssen F. Experimental study of the E(mk)/E(m, 1064) ratio as a function of wavelength, fuel type, height above the burner and temperature // Appl. Phys. B. 2014. V.00, N 116. P. 313–323.
  19. Panchenko M.V., Kozlov V.S., Pol'kin V.V., Terpugova S.A., Tumakov A.G., Shmargunov V.P. Vosstanovlenie opticheskih harakteristik troposfernogo aerozolya Zapadnoj Sibiri na osnove obobshchennoj empiricheskoj modeli, uchityvayushchej pogloshchayushchie i gigroskopicheskie svojstva chastits // Optika atmosf. i okeana. 2012. V. 25, N 1. P. 46–54.
  20. Zuev V.E., Krekov G.M. Opticheskie modeli atmosfery. L.: Gidrometeoizdat, 1986. 256 p.
  21. Twitty J.T., Weinmann J.A. Radiative properties of carbonaceous aerosol // J. Appl. Met. 1971. V. 10. P. 725–731.
  22. Bond T.C., Bergstrom R.W. Light absorption by carbonaceous particles: An investigative review // Aerosol Sci. Technol. 2006. V. 40. P. 27–67.
  23. Gurentsov E., Eremin A., Miheeva E., Kolotushkin R. Vliyanie razmerov i struktury na opticheskie svojstva sazhevyh chastits, sintezirovannyh pri pirolize i gorenii uglevodorodov // Teplofizika vysokih temperatur. 2022. V. 60, N 2. DOI: 10.31857/S0040364422020053.
  24. Russo C., Apicella B., Tregrossi A., Ciajolo A., Le K.C., Török S., Bengtsson P.-E. Optical band gap analysis of soot and organic carbon in premixed ethylene flames: Comparison of in-situ and ex-situ absorption measurements // Carbon. 2020. V. 158. P. 89–96.
  25. Schulz M., Textor C., Kinne S., Balkanski Y., Bauer S., Berntsen T., Berglen T., Boucher O., Dentener F., Guibert S., Isaksen I.S.A., Iversen T., Koch D., Kirkevåg A., Liu X., Montanaro V., Myhre G., Penner J.E., Pitari G., Reddy S., Seland Ø., Stier P., Takemura T. Radiative forcing by aerosols as derived from the AeroCom present-day and pre-industrial simulations // Atmos. Chem. Phys. 2006. V. 6. P. 5225–5246.
  26. Chleck P., Coakley J.A. Jr. Aerosols and climate // Science. 1974. V. 183. P. 5–77.
  27. Ogren J.A., Charlson R.J. Elemental carbon in the atmosphere: Cycle and lifetime // Tellus B. 1983. V. 35. P. 241–254.
  28. Bond T.C., Bhardwaj E., Dong R., Jogani R., Jung S., Roden C., Streets D.G., Trautmann N.M. Historical emissions of black and organic carbon aerosol from energy-related combustion, 1850–2000 // Global Biogeochem. Cycles. 2007. V. 21. GB2018.
  29. Liu F., Yon J., Fuentes A., Lobo P., Smallwood G.J., Corbinet J.C. Review of recent literature on the light absorption properties of black carbon: Refractive index, mass absorption cross section, and absorption function // Aerosol Sci. Technol. 2020. V. 54. P. 33–51.
  30. Su D.S., Muller J.-O., Jentoft R.E., Rothe D., Jacob E., Schogl R. Fullerene-like soot from EuroIV diesel engine: Consequences for catalytic automotive pollution control // Top. Catal. 2004. V. 30. P. 241–245.
  31. Lu S., Tan Z., Liu P., Zhao H., Liu D., Yu Sh., Cheng P., Win M.S., Hu J., Tian L., Wu M., Yonemochi Sh., Wang Q. Single particle aerosol mass spectrometry of coal combustion particles associated with high lung cancer rates in Xuanwei and Fuyuan, China // Chemosphere. 2017. V. 186. P. 278–286.
  32. Torvela T., Tissari J., Sippula O., Kaivosoja T., Leskinen J., Virén A., Lähde A., Jokiniemi J. Effect of wood combustion conditions on the morphology of freshly emitted fine particles // Atmos. Environ. 2014. V. 87. P. 65–76.
  33. Luo Y., Zhu L., Fang J., Zhuang Z., Guan C., Xia C., Xie X., Huang Z. Size distribution, chemical composition and oxidation reactivity of particulate matter from gasoline direct injection (GDI) engine fueled with ethanol-gasoline fuel // Appl. Therm. Eng. 2015. V. 89. P. 647–655.