Vol. 35, issue 08, article # 3
Copy the reference to clipboard
Abstract:
Results of calculating the spectrum of phosphorus monoxide (PO) fluorescence bands are presented. It is shown that the use of excitation radiation with wavelengths near the bandheads of the (P22 + Q12) and P12 branches of the A2Σ+ (ν´ = 0) - X2Π3/2 (v´´ = 0) band provides a spectral separation of the γ (0, 1) PO fluorescence band and the vibrational-rotational Raman spectrum of oxygen. The spectra of the γ (0, 1) fluorescence band of PO fragments of dimethylmethylphosphonate and the vibrational-rotational band of spontaneous Raman scattering on atmospheric oxygen molecules were experimentally obtained under exposure to KrF-laser radiation at a wavelength of 247.78 nm. It is shown that the results of calculations of the shape and position of the fluorescence spectra are in good agreement with the experimental data.
Keywords:
organophosphates, laser fragmentation, phosphorus oxide, PO-fragment, laser-induced fluorescence
References:
- Rodgers M.O., Asai K., Davis D.D. Photofragmentation-laser induced fluorescence: a new method for detecting atmospheric trace gases // Appl. Opt. 1980. V. 19, N 21. P. 3597–3605.
- Galloway D.B., Bartz J.A., Huey L.G., Crim F.F. Pathways and kinetic energy disposal in the photodissociation of nitrobenzene // J. Chem. Phys. 1993. V. 98, N 3. P. 2107–2114.
- Lemire G.W., Simeonsson J.B., Sausa R.C. Monitoring of vapor-phase nitro compounds using 226-nm radiation: Fragmentation with subsequent NO resonance-enhanced multiphoton ionization detection // Anal. Chem. 1993. V. 65, N 5. P. 529–533.
- Galloway D.B., Glenewinkel-Meyer T., Bartz J.A., Huey L.G., Crim F.F. The kinetic and internal energy of NO from the photodissociation of nitrobenzene // J. Chem. Phys. 1994. V. 100, N 3. P. 1946–1952.
- Wu D.D., Singh J.P., Yueh F.Y., Monts D.L. 2,4,6-Trinitrotoluene detection by laser-photofragmentation–laser-induced fluorescence // Appl. Opt. 1996. V. 35, N 21. P. 3998–4003.
- Simeonsson J.B., Sausa R.C. A critical review of laser photofragmentation/fragment detection techniques for gas phase chemical analysis // Appl. Spectrosc. Rev. 1996. V. 31, N 1. P. 1–72.
- Swayambunathan V., Singh G., Sausa R.C. Laser photofragmentation–fragment detection and pyrolysis–laser-induced fluorescence studies on energetic materials // Appl. Opt. 1999. V. 38, N 30. P. 6447–6454.
- Daugey N., Shu J., Bar I., Rosenwaks S. Nitrobenzene detection by one-color laser photolysis/laser induced fluorescence of NO (v = 0 - 3) // Appl. Spectrosc. 1999. V. 53, N 1. P. 57–64.
- Shu J., Bar I., Rosenwaks S. Dinitrobenzene detection by use of one-color laser photolysis and laser-induced fluorescence of vibrationally excited NO // Appl. Opt. 1999. V. 38, N 21. P. 4705–4710.
- Shu J., Bar I., Rosenwaks S. The use of rovibrationally excited NO photofragments as trace nitrocompounds indicators // Appl. Phys. B. 2000. V. 70, N 4. P. 621–625.
- Shu J., Bar I., Rosenwaks S. NO and PO photofragments as trace analyte indicators of nitrocompounds and organophosphonates // Appl. Phys. B. 2000. V. 71, N 5. P. 665–672.
- Arusi-Parpar T., Heflinger D., Lavi R. Photodissociation followed by laser-induced fluorescence at atmospheric pressure and 24°C: A unique scheme for remote detection of explosives // J. Appl. Opt. 2001. V. 40, N 36. P. 6677–6681.
- Heflinger D., Arusi-Parpar T., Ron Y., Lavi R. Application of a unique scheme for remote detection of explosives // Opt. Commun. 2002. V. 204, N 1–6. P. 327–331.
- Wynn C.M., Palmacci S., Kunz R.R., Zayhowski J.J., Edwards B., Rothschild M. Experimental demonstration of remote optical detection of trace explosives // Proc. SPIE. 2008. V. 6954. P.695407–8.
- Arusi-Parpar T., Fastig S., Shapira J., Shwartzman B., Rubin D., Ben-Hamo Y., Englander A. Standoff detection of explosives in open environment using enhanced photodissociation fluorescence // Proc. SPIE. 2010. V. 7684. P. 76840L–7.
- Wynn C.M., Palmacci S., Kunz R.R., Rothschild M. Noncontact detection of homemade explosive constituents via photodissociation followed by laser-induced fluorescence // Opt. Express. 2010. V. 18, N 6. P. 5399–5406.
- Wynn C.M., Palmacci S., Kunz R.R., Aernecke M. Noncontact optical detection of explosive particles via photodissociation followed by laser-induced fluorescence // Opt. Express. 2011. V. 19, N 19. P. 18671–18677.
- Bobrovnikov S.M., Gorlov E.V. Lidarnyj metod obnaruzheniya parov vzryvchatyh veshchestv v atmosfere // Optika atmosf. i okeana. 2010. V. 23. N 12. P. 1055–1061; Bobrovnikov S.M., Gorlov E.V. Lidar method for remote detection of vapors of explosives in the atmosphere // Atmos. Ocean Opt. 2011. V. 24, N 3. P. 235–241.
- Bobrovnikov S.M., Gorlov E.V., Zharkov V.I., Panchenko Yu.N., Puchikin A.V. Two-pulse laser fragmentation/laserinduced fluorescence of nitrobenzene and nitrotoluene vapors // Appl. Opt. 2019. V. 58, N 27. P. 7497–7502.
- Bobrovnikov S.M., Gorlov E.V., Zharkov V.I. Evaluation of limiting sensitivity of the one-color laser fragmentation/laser-induced fluorescence method in detection of nitrobenzene and nitrotoluene vapors in the atmosphere // Atmosphere. 2019. V. 10, N 11, 692. P. 1–11.
- Bobrovnikov S.M., Gorlov E.V., Zharkov V.I., Panchenko Yu.N., Puchikin A.V. Dynamics of the laser fragmentation/laserinduced fluorescence process in nitrobenzene vapors // Appl. Opt. 2018. V. 57, N 31. P. 9381–9387.
- Long S.R., Sausa R.C., Miziolek A.W. LIF studies of PO produced in excimer laser photolysis of dimethyl methyl phosphonate // Chem. Phys. Lett. 1985. V. 117, N 5. P. 505–510.
- Bisson S.E., Headrick J.M., Reichardt T.A., Farrow R.L., Kulp T.J. A two-pulse, pump-probe method for short-range, remote standoff detection of chemical warfare agents // Proc. SPIE. 2011. V. 8018. P. 80180Q-1–7.
- Yang L., Shroll R.M., Zhang J., Lourderaj U., Hase W.L. Theoretical investigation of mechanisms for the gas-phase unimolecular decomposition of DMMP // J. Phys. Chem. A. 2009. V. 113, N 49. P. 13762–13771.
- Gutsev G.L., Boateng D.A., Jena P., Tibbetts K.M. A theoretical and mass spectrometry study of dimethyl methylphosphonate: New isomers and cation decay channels in an intense femtosecond laser field // J. Phys. Chem. A. 2017. V. 121, N 44. P. 8414–8424.
- Douglas K.M., Blitz M.A., Mangan T.P., Plane J.M.C. Experimental study of the removal of ground- and excited-state phosphorus atoms by atmospherically relevant species // J. Phys. Chem. A 2019. V. 123. P. 9469–9478.
- Douglas K.M., Blitz M.A., Mangan T.P., Westernand C.M., Plane J.M.C. Kinetic study of the reactions PO + O2 and PO2 + O3 and spectroscopy of the PO radical // J. Phys. Chem. A. 2020. V. 124, N 39. P. 7911–7926.
- Henshaw T.L., MacDonald M.A., Stedman D.H., Coombe R.D. The P(4Su) + N3(2Πg) reaction: Chemical generation of a new metastable state of PN // J. Phys. Chem. 1987. V. 91, N 11. P. 2838–2842.
- Acuna A.U., Husain D., Wiesenfeld J.R. Kinetic study of electronically excited phosphorus atoms, P(32DJ, 32PJ), by atomic absorption spectroscopy // J. Chem. Phys. 1973. V. 58, N 2. P. 494–499.
- Atomic Spectra Database (ver. 5.9) // NIST. Gaithersburg, 2022. URL: https://physics.nist.gov/asd. DOI: 10.18434/ T4W30F.
- Bobrovnikov S.M., Gorlov E.V., Zharkov V.I. Effektivnost' lazernogo vozbuzhdeniya PO-fotofragmentov organofosfatov // Optika atmosf. i okeana. 2022. V. 35, N 3. P. 175–185; Bobrovnikov S.M., Gorlov E.V., Zharkov V.I. Efficiency of laser excitation of PO photofragments of organophosphates // Atmos. Ocean Opt. 2022/ V. 35, N 4. P. 329–340.
- Bobrovnikov S.M., Gorlov E.V., Zharkov V.I., Murashko S.N. Otsenka effektivnosti lazernogo vozbuzhdeniya perekhoda B2Σ+ (vʹ = 0) - X2Π (v´´ = 0) oksida fosfora // Optika atmosf. i okeana. 2022. V. 35, N 5. P. 361–368.
- Panchenko Y., Puchikin A., Yampolskaya S., Bobrovnikov S., Gorlov E., Zharkov V. Narrowband KrF laser for lidar systems // IEEE J. Quantum Electron. 2021. V. 57, N 2. P. 1–5.
- Butrow A.B., Buchanan J.H., Tevault D.E. Vapor pressure of organophosphorus nerve agent simulant compounds // Chem. Eng. Data. 2009. V. 54, N 6. P. 1876–1883.