Vol. 35, issue 08, article # 10

Shishko V. A., Timofeev D. N., Konoshonkin A. V., Kustova N. V., Kan N., Tkachev I. V., Masuda K., Ishimoto H., Okamoto H., Borovoy A. G. Backscattering properties of optical and electromagnetic waves with remote sensing of cirrus clouds by 0.355 mm polarizing lidar and 94 GHz radar. // Optika Atmosfery i Okeana. 2022. V. 35. No. 08. P. 664–669. DOI: 10.15372/AOO20220810 [in Russian].
Copy the reference to clipboard


The problem of electromagnetic scattering on ice crystals of cirrus clouds was solved for 94 GHz radar (wavelength 3189 mm) and lidar (wavelength 0.355 mm) with the refractive indices of ice – 1.7864 + 0.0032 × i and 1.3249 + 0 × i respectively. The scattering matrices were calculated within the physical optics approximation and the discrete dipole approximation for the case of randomly oriented particles. The particle sizes varied from 4 to 1000 mm. It was possible to correctly calculate the ratio of the radar and lidar signals in the backscattering direction, called the radar-lidar ratio. The ratio was obtained for the wide particle size distribution for typical shapes of cirrus cloud ice crystals. It is shown that this ratio can be used to estimate the size of ice crystals in cirrus clouds.


light scattering, lidar, radar, physical optics, discrete dipole approximation, atmospheric ice crystal, cirrus cloud



  1. Baker B.M. Cloud microphysics and climate // Science. 1997. V. 276. P. 1072–1078.
  2. Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change / S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M. Tignor, H.L. Miller (eds.). New York, USA; Cambridge, United Kingdom: Cambridge University Press, 2007. 996 p.
  3. Wendling P., Wendling R., Weickmann H.K. Scattering of solar radiation by hexagonal ice crystals // Appl. Opt. 1979. V. 18. P. 2663–2671.
  4. Liou K.N. Influence of cirrus clouds on weather and climate processes: A global perspective // Mon. Wea. Rev. 1986. V. 114, N 6. P. 1167–1199.
  5. Takano Y., Liou K.N. Radiative transfer in cirrus clouds. Part III: Light scattering by irregular ice crystals // J. Atmos. Sci. 1995. V. 52, N 7. P. 818–837.
  6. Sassen K., Benson S. A midlatitude cirrus cloud climatology from the facility for atmospheric remote sensing: II. Microphysical properties derived from lidar depolarization // J. Atmos. Sci. 2001. V. 58, N 15. P. 2103–2112.
  7. Sassen K., Zhu J., Benson S. Midlatitude cirrus cloud climatology from the facility for atmospheric remote sensing. IV. Optical displays // Appl. Opt. 2003. V. 42. P. 332–341.
  8. Takano Y., Liou K.N. Solar radiative transfer in cirrus clouds. Part I. Single scattering and optical properties of hexagonal ice crystals // J. Atmos. Sci. 1989. V. 46, N 1. P. 3–19.
  9. Hobbs P.V., Chang S., Locatelli J.D. The dimensions and aggregation of ice crystals in natural clouds // J. Geophys. Res. 1974. V. 79. P. 2199–2206. 
  10. Um J., McFarquhar G.M. Formation of atmospheric halos and applicability of geometric optics for calculating single-scattering properties of hexagonal ice crystals: Impacts of aspect ratio and ice crystal size // J. Quant. Spectrosc. Radiat. Transfer. 2015. V. 165. P. 134–152.
  11. Baker B.A., Lawson R.P. In situ observations of the microphysical properties of wave, cirrus, and anvil clouds. Part I: Wave clouds // J. Atmos. Sci. 2006. V. 63. P. 3160–3185.
  12. Um J., McFarquhar G.M., Hong Y.P., Lee S.-S., Jung C.H., Lawson R.P., Mo Q. Dimensions and aspect ratios of natural ice crystals // Atmos. Chem. Phys. 2015. V. 15. P. 3933–3956.
  13. Moshary F., Han Z., Wu Y., Gross B., Wesloh D., Hoff R.M., Delgado R., Su J., Lei L., Lee R.B., McCormick M.P., Diaz J., Cruz C., Parsiani H. New results from the NOAA CREST Lidar Network (CLN) observations in the US eastcoast // EPJ Web of Conf. 2016. V. 119. P. 19005.
  14. Veselovskii I., Goloub P., Podvin T., Tanre D., Ansmann A., Korenskiy M., Borovoi A., Hu Q., Whiteman D.N. Spectral dependence of backscattering coefficient of mixed phase clouds over West Africa measured with two-wavelength Raman polarization lidar: Features attributed to ice-crystals corner reflection // J. Quant. Spectrosc. Radiat. Transfer. 2017. V. 202. P. 74–80.
  15. Balin Y.S., Samoilova S.V., Krekova M.M., Winker D.M. Retrieval of cloud optical parameters from space-based backscatter lidar data // Appl. Opt. 1999. V. 38, N 30. P. 6365–6373.
  16. Kokhanenko G.P., Balin Yu.S., Klemasheva M.G., Nasonov S.V., Novoselov M.M., Penner I.E., Samoilova S.V. Scanning polarization lidar LOSA-M3: Opportunity for research of crystalline particle orientation in the clouds of upper layers // Atmos. Meas. Tech. 2020. V. 13, N 3. P. 1113–1127.
  17. Okamoto H., Macke A., Quante M., Raschke E. Modeling of backscattering by nonspherical ice particles for the interpretation of cloud radar signals at 94 GHz. An error analysis // Beitr. Phys. Atmos. 1995. V. 68. P. 319–334.
  18. Liu C.-L., Illingworth A.J. Toward more accurate retrievals of ice water content from radar measurements of clouds // J. Appl. Meteorol. 2000. V. 39, N 7. P. 1130–1146.
  19. Zabukovec A., Ancellet G., Penner I.E., Arshinov M., Kozlov V., Pelon J., Paris J.-D., Kokhanenko G., Balin Y.S., Chernov D., Belan B.D. Characterization of aerosol sources and optical properties in Siberia using airborne and spaceborne observations // Atmosphere. 2021. V. 12(2). Art. N 244.
  20. Winker D.M., Couch R.H., McCormick M.P. An overview of LITE: NASA's Lidar-in-space Technology Experiment // Proc. IEEE. 1996. V. 84. P. 164–180.
  21. Winker D.M., Pelon J., McCormick M.P. The CALIPSO mission: Spaceborne lidar for observation of aerosols and clouds // Proc. SPIE. 2002. V. 4893.
  22. Balin Yu.S., Tihomirov A.A. Istoriya sozdaniya i raboty v sostave orbital'noj stancii «Mir» pervogo rossijskogo kosmicheskogo lidara BALKAN // Optika atmosf. i okeana. 2011. V. 24, N 12. P. 1078–1087.
  23. Sassen K., Wang Z., Liu D. Global distribution of cirrus clouds from CloudSat/Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) measurements // J. Geophys. Res. 2008. V. 113. (D00A12).
  24. Garrett K.J., Yang P., Nasiri S.L., Yost C.R., Baum B.A. Influence of cloud top height and geometric thickness on MODIS infrared-based cirrus cloud retrieval // J. Appl. Meteorol. Climatol. 2009. V. 48. P. 818–832.
  25. Shishko V.A., Bryukhanov I.D., Nie E.V., Kustova N.V., Timofeev D.N., Konoshonkin A.V. Algoritm interpretacii matric obratnogo rasseyaniya sveta peristyh oblakov dlya vosstanovleniya ih mikrofizicheskih parametrov // Optika atmosf. i okeana. 2019. V. 32, N 3. P. 186–192; Shishko V.A., Bryukhanov I.D., Nie E.V., Kustova N.V., Timofeev D.N., Konoshonkin A.V. Algorithm for interpreting light backscattering matrices of cirrus clouds for the retrieval of their microphysical parameters // Atmos. Ocean. Opt. 2019. V. 32, N 4. P. 393–399.
  26. Okamoto H., Iwasaki S., Yasui M., Horie H., Kuroiwa H., Kumagai H. An algorithm for retrieval of cloud microphysics using 95-GHz cloud radar and lidar // J. Geophys. Res. 2003. V. 108, N D7. P. 4226.
  27. Borovoi A., Konoshonkin A., Kustova N., Okamoto H. Backscattering Mueller matrix for quasihorizontally oriented ice plates of cirrus clouds: Application to CALIPSO signals // Opt. Express. 2012. V. 20. P. 28222–28233.
  28. Konoshonkin A., Borovoi A., Kustova N., Reichardt J. Power laws for backscattering by ice crystals of cirrus clouds // Opt. Express. 2017. V. 25, N 19. P. 22341–22346.
  29. Okamoto H., Sato K., Borovoi A., Ishimoto H., Masuda K., Konoshonkin A., Kustova N. Interpretation of lidar ratio and depolarization ratio of ice clouds using spaceborne high-spectral-resolution polarization lidar // Opt. Express 2019. V. 27, N 25. P. 36587–36600.
  30. Okamoto H., Sato K., Borovoi A., Ishimoto H., Masuda K., Konoshonkin A., Kustova N. Wavelength dependence of ice cloud backscatter properties for space-borne polarization lidar applications // Opt. Express 2020. V. 28, N 20. P. 29178–29191.
  31. Wang Z., Shishko V., Kustova N., Konoshonkin A., Timofeev D., Xie C., Liu D., Borovoi A. Radar-lidar ratio for ice crystals of cirrus clouds // Opt. Express 2021. V. 29, N 3. P. 4464–4474.
  32. Intrieri J.M., Stephens G.L., Eberhard W.L., Uttal T. A method for determining cirrus cloud particle sizes using lidar and radar backscatter technique // J. Appl. Meteorol. 1993. V. 32. P. 1074–1082.
  33. Mie G. Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen // Ann. Phys. 1908. V. 25. P. 377–445.
  34. Wiscombe W.J. Improved Mie scattering algorithms // Appl. Opt. 1980. V. 19. P. 1505–1509.
  35. Heymsfield A.J. Ice crystal terminal velocities // J. Atmos. Sci. 1972. V. 29. P. 1348–1357.
  36. Balin Yu.S., Kaul' B.V., Kohanenko G.P. Nablyudenie zerkal'no otrazhayushchih chastic i sloev v kristallicheskih oblakah // Optika atmosf. i okeana. 2011. V. 25, N 4. P. 293–299.
  37. Borg L.A., Holz R.E., Turner D.D. Investigating cloud radar sensitivity to optically thin cirrus using collocated Raman lidar observations // Geophys. Res. Lett. 2011. V. 38. DOI: 10.1029/2010GL046365.
  38. Tinel C., Testud J., Pelon J., Hogan R.J., Protat A., Delanoe J., Bouniol D. The retrieval of ice-cloud properties from cloud radar and lidar synergy // J. Appl. Meteorol. 2005. V. 44. P. 860–875.
  39. Delanoe J., Hogan R.J. Combined CloudSat-CALIPSO-MODIS retrievals of the properties of ice clouds // J. Geophys. Res. 2010. V. 115. DOI: 10.1029/2009JD012346.
  40. Protat A., Delanoe J., O’Connor E.J., L’Ecuer T.S. The evaluation of CloudSat and CALIPSO ice microphysical products using ground-based cloud radar and lidar observations // J. Atmos. Ocean. Technol. 2010. V. 27. P. 793–810.
  41. Illingworth A.J., Barker H.W., Beljaars A., Ceccaldi M., Chepfer H., Clerbaux N., Cole J., Delanoë J., Domenech C., Donovan D.P., Fukuda S., Hirakata M., Hogan R.J., Huenerbein A., Kollias P., Kubota T., Nakajima T., Nakajima T.Y., Nishizawa T., Ohno Y., Okamoto H., Oki R., Sato K., Satoh M., Shephard M.W., Velázquez-Blázquez A., Wandinger U., Wehr T., van Zadelhoff G.-J. The EarthCARE satellite: The next step forward in global measurements of clouds, aerosols, precipitation, and radiation // Bull. Am. Meteorol. Soc. 2015. V. 96, N 8. P. 1311–1332.
  42. Hayman M., Thayer J.P. General description of polarization in lidar using Stokes vectors and polar decomposition of Mueller matrices // J. Opt. Soc. Am. A. 2012. V. 29. P. 400–409.
  43. Shishko V.A., Konoshonkin A.V., Kustova N.V., Timofeev D.N. Light scattering by spherical particles for data interpretation of mobile lidars // Opt. Eng. 2020. V. 59, N 8. P. 083103.
  44. Shishko V.A., Konoshonkin A.V., Kustova N.V., Timofeev D.N., Borovoi A.G. Coherent and incoherent backscattering by a single large particle of irregular shape // Opt. Express. 2019. V. 27, N 23. P. 32984–32993.
  45. Timofeev D.N., Konoshonkin A.V., Kustova N.V., Shishko V.A., Borovoi A.G. Ocenka vliyaniya pogloshcheniya na rasseyanie sveta na atmosfernyh ledyanyh chasticah dlya dlin voln, harakternyh dlya zadach lazernogo zondirovaniya atmosfery // Optika atmosf. i okeana. 2019. V. 32, N 5. P. 381–385; Timofeev D.N., Konoshonkin A.V., Kustova N.V., Shishko V.A., Borovoi A.G. Estimation of the absorption effect on light scattering by atmospheric ice crystals for wavelengths typical for problems of laser sounding of the atmosphere // Atmos. Ocean. Opt. 2019. V. 32, N 5. P. 564–568.
  46. Penttilä A., Zubko E., Lumme K., Muinonen K., Yurkin M.A., Draine B., Rahola J., Hoekstra A.G., Shkuratov Yu. Comparison between discrete dipole implementations and exact techniques // J. Quant. Spectrosc. Radiat. Transfer. 2007. V. 106. P. 417–436.
  47. Yurkin M.A., Hoekstra A.G. The discrete-dipole-approximation code ADDA: Capabilities and known limitations // J. Quant. Spectrosc. Radiat. Transfer. 2011. V. 112. P. 2234–2247.
  48. Yang P., Liou K.N. Light scattering and absorption by nonspherical ice crystals // Light Scattering Reviews, v. 1 / A.A. Kokhanovsky (ed.). Chichester: Springer-Praxis, 2006.
  49. Landau L.D., Lifshic E.M. Releevskoe rasseyanie v gazah i zhidkostyah // Teoreticheskaya fizika. Elektrodinamika sploshnyh sred. M.: Nauka, 1982. V. VIII. P. 582–583.
  50. Baza dannyh matric obratnogo rasseyaniya, rasschitannyh v ramkah fizicheskoj optiki, [Elektronnyj resurs]. URL: ftp://ftp.iao.ru/pub/GWDT/Physical_optics/Backscattering/ (data obrashcheniya: 4.04.2022).
  51. Borovoi A., Konoshonkin A., Kustova N., Okamoto H. Backscattering Mueller matrix for quasihorizontally oriented ice plates of cirrus clouds: Application to CALIPSO signals // Opt. Express. 2012. V. 20. P. 28222–28233.
  52. Okamoto H., Sato K., Hagihara Y. Global analysis of ice microphysics from CloudSat and CALIPSO: Incorporation of specular reflection in lidar signals // J. Geophys. Res. 2010. V. 115. (D22209).