Vol. 35, issue 08, article # 1

Ponomarev Yu. N., Cherepanov V. N., Nasibulin R. T., Simonova A. A. Estimation of the orientation type of H2O molecules in the adsorbed layer on the surface of SiO2 airgel nanopores. // Optika Atmosfery i Okeana. 2022. V. 35. No. 08. P. 603–607. DOI: 10.15372/AOO20220801 [in Russian].
Copy the reference to clipboard

Abstract:

The possibility of determining the orientation of H2O molecules adsorbed on the surface of SiO2 airgel nanopores is studied. The interaction energy of a free H2O molecule with H2O molecules adsorbed on the surface of a nanopore are quantum-chemical calculated for the cases of their chaotic and ordered orientations. Experimental data on the broadening of the vibrational-rotational absorption lines of H2O in airgel nanopores are analyzed. It is shown that the experimental data correspond to the model of orderly oriented H2O molecules on the surface of nanopores.

Keywords:

H2O, aerogel, nanopores, intermolecular interaction

References:

1. Ponomarev Y.N., Petrova T.M., Solodov A.M., Solodov A.A. IR spectroscopy of water vapor confined in nanoporous silica aerogel // Opt. Express. 2010. V. 18, N 25. P. 26062–26067.
2. Solodov A.A., Petrova T.M., Ponomarev Y.N., Solodov A.M. Influence of nanoconfinement on the rotationnal dependence of line half-widths for 2–0 band of carbon oxide // Chem. Phys. Lett. 2015. V. 637. P. 18–21.
3. Vander Auwera J., Ngo N.H., Hamzaoui H.E., Capoen B., Bouazaoui M., Ausset P., Boulet C., Hartmann J.M. Infrared absorption by molecular gases as a probe of nanoporous silica xerogel and molecule-surface collisions: Low-pressure results // Phys. Rev. A. 2013. V. 88. P. 042506.
4. Hartmann J.M., Boulet C., Vander Auwera J., Hamzaoui H.El, Capoen B., Bouazaoui M. Line broadening of confined CO gas: From moleculewall to molecule-mo­lecule collisions with pressure // J. Chem. Phys. 2014. V. 140. P. 643902.
5. Svensson T., Lewander M., Svanberg S. Laser absorption spectroscopy of water vapor confined in nanoporous alumina: wall collision line broadening and gas diffusion dynamics // Opt. Express. 2010. V. 18, N 16. P. 16460–16473.
6. Nasibullin R.T., Ponomarev Y.N., Cherepanov V.N. Interaction potential of H2O molecules and water layer adsorbed on surface of aerogel nanopores // Proc. SPIE. 2018. V. 10833. P. 1083304.
7. Fois E., Gamba A., Tabacchi G. Influence of silanols condensation on surface properties of micelle-templated silicas: A modeling study // Microporous Mesoporous Mater. 2008. V. 116. P. 718–722.
8. Tamura T., Ishibashi S., Tanaka S., Kohyama M., Lee M.-H. First-principles analysis of the optical properties of structural disorder in SiO2 glass // Phys. Rev. B. 2008. V. 77, N 8. P. 085207.
9. Musso F., Sodupe M., Corno M., Ugliengo P. H-bond features of fully hydroxylated surfaces of crystalline silica polymorphs: A periodic B3LYP study // J. Phys. Chem. C. 2009. V. 113, N 41. P. 17876–17884.
10. Poelz G. Aerogel Cherenkov counters at DESY // Nucl. Instruments Methods. 1986. V. 248, N 118. P. 84–110.
11. Frisch M.J., Trucks G.W., Schlegel H.B., Scuseria G.E., Robb M.A., Cheeseman J.R., Scalmani G., Barone V., Petersson G.A., Nakatsuji H., Li X., Caricato M., Marenich A., Bloino J., Janesko B.G., Gomperts R., Mennucci B., Hratchian H.P., Ortiz J.V., Izmaylov A.F., Sonnenberg J.L., Williams-Young D., Ding F., Lippa­rini F, Egidi F., Goings J., Peng B., Petrone A., Henderson T., Ranasinghe D., Zakrzewski V.G., Gao J., Rega N., Zheng G., Liang W., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Vreven T., Throssell K., Montgomery J.A., Peralta J.E.Jr., Oglia­ro F., Bearpark M., Heyd J.J., Brothers E., Kudin K.N., Staroverov V.N., Keith T.N., Kobayashi R., Normand J., Raghavachari K., Rendell A., Burant J.C., Iyengar S.S., Tomasi J., Cossi M., Millam J.M., Klene M., Adamo C., Cammi R., Ochterski J.W., Martin R.L., Morokuma K., Farkas O., Foresman J.B., Fox D.J. Gaussian 09, Revision A.02. Wallingford CT, 2016.
12. Tsirel'son V.G. Kvantovaya himiya. Molekuly, molekulyarnye sistemy i tverdye tela: ucheb. posobie dlya vuzov. M.: BINOM. Laboratoriya znanij, 2010. 496 p.
13. Zhang Q., Chenyang L., Ma Y., Fish F., Szczȩśniak M.M., Buch V. Intermolecular potential of H2O … H2 in the van der Waals region. An ab initio study // J. Chem. Phys. 1992. V. 96. P. 6039–6047.
14. Kaplan I.G. Intermolecular Interactions: Physical Picture, Computational methods and Model Potentials. Mexico: John Wiley&Sons, Ltd, 2006. 367 p.
15. Petrova T.M., Ponomarev Y.N., Solodov A.A., Solodov A.M., Daniljuk A.F. Spectroscopic nanoporometry of aerogel // JETP Lett. 2015. V. 101. P. 65–67.
16. Ptashnik I.V., Smith K.M. Water vapour line intensities and self-broadening coefficients in the 5000–5600 cm-1 spectral region // J. Quant. Spectrosc. Radiat. Transfer. 2010. V. 111, N 10. P. 1317–1327.
17. Lavrent'eva N.N., Dudarenok A.S. Ushirenie linij vodyanogo para davleniem vodoroda, temperaturnaya zavisimost' // Optika atmosfery i okeana. 2016. V. 29, N 10. P. 828–832.
18. Ptashnik I.V, Smith K.M., Shine K.P., Newnham D.A. Laboratory measurements of water vapour continuum absorption in spectral region 5000–5600 cm-1: Evidence for water dimers // Quant. J. Roy. Meteorol. Soc. 2004. V. 130. P. 2391–2408.
19. Paynter D.J., Ptashnik I.V., Shine K.P., Smith K.M., McPheat R., Williams R.G. Laboratory measurements of the water vapor continuum in the 1200–8000 cm-1 region between 293 K and 351 K // J. Geophys. Res.: Atmos. 2009. V. 114. P. D21301.
20. Ptashnik I.V., Petrova T.M., Ponomarev Y.N., Shine K.P., Solodov A.A., Solodov A.M. Near-infrared water vapour self-continuum at close to room temperature // J. Quant. Spectrosc. Radiat. Transfer. 2013. V. 120. P. 23–35.