Vol. 35, issue 07, article # 3

Shybanov E. B., Papkova A. S., Kalinskaya D. V. Specifics of using atmospheric correction algorithms to determine the brightness of the Black Sea on days of dust transport from MODIS satellite data. // Optika Atmosfery i Okeana. 2022. V. 35. No. 07. P. 532–538. DOI: 10.15372/AOO20220703 [in Russian].
Copy the reference to clipboard

Abstract:

In this study, three dates of dust transport over the Black Sea are considered. During the analysis of MODIS-Aqua satellite images, probable dust pixels were determined, confirmed by field measurements of ground-based Cimel-318 photometers (AERONET station). Further, using the method of principal components (covariance analysis), the contribution of dust to the variability of the values of the spectral brightness coefficient of the sea was estimated. In the cases of dust transport, the spectral properties of the first vector are explained by the presence of an absorbing aerosol distributed over the height. The absorption effect reduces the amount of brightness reflected by the entire atmosphere in the viewing direction. In the case of a clean atmosphere, the first eigenvector has minimal errors of atmospheric correction, and all variability is due to the reflective properties of the sea water.

Keywords:

atmospheric correction, remote sensing, reflectance, dust aerosol, AOD, microparticles, concentration, MODIS, AERONET, HYSPLIT

References:

  1. Gordon H.R. Removal of atmospheric effects from satellite imagery of the ocean // Appl. Opt. 1978. V. 17. P. 1631–1636.
  2. Viollier M., Tanre D., Deschamps P.Y. An algorithm for remote sensing of water color from space // Bound.-Lay. Meteorol. 1980. V. 18. P. 247–267.
  3. Gordon H.R., Wang M. Retrieval of water-leaving radiance and aerosol optical thickness over the oceans with SeaWiFS: A preliminary algorithm //Appl. Opt. 1994. V. 33, N 3. P. 443–452.
  4. Shettle E.P., Fenn R.W. Models for the aerosols of the lower atmosphere and the effects of humidity variations on their optical properties. Report AFGL-TR-79-0214. Air Force Geophysics Laboratory, USA, 1979.
  5. Suetin V.S., Korolev S.N., Suslin V.V., Kucheryavyj A.A.Proyavlenie osobennostej opticheskih svojstv atmosfernogo aerozolya nad Chernym morem pri interpretatsii dannyh sputnikovogo pribora SeaWiFS // Mor. gidrofiz. zhurn. 2004. V. 1. P. 69–79.
  6. Suetin V.S., Korolev S.N., Suslin V.V., Kucheryavyj A.A. Proyavleniya atmosfernyh iskazhenij v dannyh sputnikovogo pribora SeaWiFS v okrestnosti okeanograficheskoj platformy v Katsiveli letom 2002 year // Ekologicheskaya bezopasnost' pribrezhnoj i shel'fovoj zon i kompleksnoe ispol'zovanie resursov shel'fa. 2004. V. 11. P. 174–183.
  7. Korchemkina E.N., Shibanov E.B., Li M.E. Usovershenstvovanie metodiki atmosfernoj korrektsii dlya distantsionnyh issledovanij pribrezhnyh vod CHernogo morya // Issled. Zemli iz kosmosa. 2009. V. 6. P. 24–30.
  8. Kondrat'ev K.Ya. Perenos izlucheniya v atmosfere. L.: Gidrometeoizdat, 1972. 402 p.
  9. Waters J.W. Absorption and emission by atmospheric gases // Methods of Experimental Physics. New York: Academic, 1976. V. 12, part B. P. 142–176.
  10. Nobileau D., Antoine D. Detection of blue-absorbing aerosols using near infrared and visible (ocean color) remote sensing observations // Rem. Sens. Environ. 2005. V. 95. P. 368–387.
  11. Kalinskaya D.V., Papkova A.S. Effect of the absorbing aerosol on the value of the brightness spectral factor by AERONET data and MODIS satellite data over the Black sea region // Proc. SPIE. 2019. V. 11208. P. 112084R.
  12. Papkova A.S., Shibanov E.B. Vliyanie pylevogo aerozolya na rezul'taty atmosfernoj korrektsii spektral'nogo koeffitsienta yarkosti CHernogo i Sredizemnogo morej po sputnikovym dannym MODIS // Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa. 2021. V. 18, N 6. P. 46–56.
  13. Ahmad Z., Franz B., McClain C., Kwiatkowska E., Werdell J., Shettle E., Holben B. New aerosol models for the retrieval of aerosol optical thickness and normalized water-leaving radiances from the SeaWiFS and MODIS sensors over coastal regions and Open Oceans // Appl. Opt. 2010. V. 49. P. 5545–5560.
  14. Morel A., Antoine B., Gentili B. Bidirectional reflectance of oceanic waters: Accounting for Raman emission and varying particle scattering phase function // Appl. Opt. 2002. V. 41. P. 6289–6306.
  15. Zibordi G., Holben B. AERONET-OC: A network for the validation of ocean color primary products // Atmos. Ocean. Technol. 2018. V. 2. P. 1634–1651.
  16. Papkova A.S., Papkov S.O., Shukalo D.M. Prediction of the atmospheric dustiness over the Black Sea region using the WRF-Chem model // Fluids. 2021. V. 6, N 6. P. 201.
  17. Shiryaev A.N. Veroyatnost': v 2-h v. M.: MTSNMO, 2004. 520 p.
  18. Shibanov E.B., Korchemkina E.N. Retrieving of the biooptical characteristics of Black-sea waters under the conditions of constant reflectance at a wavelength of 400 nm // Phys. Ocean. 2008. V. 18, N 1. P. 25–37.