Vol. 35, issue 06, article # 9

Semenova A. V., Zavgorodnyaya Yu. A., Chichaeva M. A., Kozlov V. S., Popovicheva O. B. Chemical composition and toxicity of Siberian biomass burning in the Large Aerosol Chamber. // Optika Atmosfery i Okeana. 2022. V. 35. No. 06. P. 486–494. DOI: 10.15372/AOO20220609 [in Russian].
Copy the reference to clipboard

Abstract:

Physicochemical and toxicological properties of biomass burning are of a big importance for assessment of wildfire impact on environment. However, the data on Siberian wildfires are much limited. The composition of Siberian biomass burning is studied in the Large Aerosol Chamber (LAC) of Institute Atmospheric Optics, Siberian Branch, Russian Academy of Sciences (Tomsk). Here, we present FTIR spectroscopy, gas chromatography-mass spectrometry, and liquid chromatography experimental data on composition of organic compounds in Siberian pine and forest debris smoke produced at smoldering and flaming phases and due to aging. Markers which allow identifying the combustion conditions and biomass type are established, namely, characteristic absorption bands, ratios of carboxyl and aliphatic functionalities, diagnostic ratios of polycyclic aromatic hydrocarbons (PAHs). Emission factors and carcinogenic risk for smoke PAH are assessed.

Keywords:

biomass burning aerosols, Siberian wildfires, Large Aerosol chamber, flaming, smoldering, organic compound, functional group, polycyclic aromatic hydrocarbon

References:

  1. Tomshin O., Solovyev V. Spatio-temporal patterns of wildfires in Siberia during 2001–2020 // Geocarto Int. 2021. P. 1–19.
  2. Lavoue D., Liousse C., Cachier H., Stocks B.J., Goldammer J.G. Modeling of carbonaceous particles emitted by boreal and temperate wildfires at northern latitudes // J. Geophys. Res.: Atmos. 2000. V. 105, N D22. P. 26871–26890.
  3. Conard S.G., Ivanova G.A. Wildfire in Russian boreal forests – Potential impacts of fire regime characteristics on emissions and global carbon balance estimates // Environ. Pollut. 1997. V. 98, N. 3. P. 305–313.
  4. Agarwal S., Aggarwal S.G., Okuzawa K., Kawamura K. Size distributions of dicarboxylic acids, ketoacids, a-dicarbonyls, sugars, WSOC, OC, EC and inorganic ions in atmospheric particles over Northern Japan: implication for long-range transport of Siberian biomass burning and East Asian polluted aerosols // Atmos. Chem. Phys. 2010. V. 10, N 13. P. 5839–5858.
  5. Russell L.M., Bahadur R., Ziemann P.J. Identifying organic aerosol sources by comparing functional group composition in chamber and atmospheric particles // Proc. Nat. Acad. Sci. 2011. V. 108, N 9. P. 3516–3521.
  6. Popovicheva O.B., Kireeva E.D., Shonija N.K., Vojtisek-Lom M., Schwarz J. FTIR analysis of surface functionalities on particulate matter produced by off-road diesel engines operating on diesel and biofuel // Environ. Sci. Pollut. Res. 2015. V. 22, N 6. P. 4534–4544.
  7. Popovicheva O., Ivanov A., Vojtisek M. Functional factors of biomass burning contribution to spring aerosol composition in a megacity: Combined FTIR-PCA analyses // Atmos. 2020. V. 11, N 4. P. 319–339.
  8. Lammers K., Arbuckle-Keil G., Dighton J. FT-IR study of the changes in carbohydrate chemistry of three New Jersey pine barrens leaf litters during simulated control burning // Soil Biol. Biochem. 2009. V. 41, N 2. P. 340–347.
  9. Iinuma Y., Bruggemann E., Gnauk T., Muller K., Andreae M.O., Helas G., Parmar R., Herrmann H. Source characterization of biomass burning particles: The combustion of selected European conifers, African hardwood, savanna grass, and German and Indonesian peat // J. Geophys. Res.: Atmos. 2007. V. 112, N D08209.
  10. Takahama S., Schwartz R.E., Russell L.M., Macdonald A.M., Sharma S., Leaitch W.R. Organic functional groups in aerosol particles from burning and non-burning forest emissions at a high-elevation mountain site // Atmos. Chem. Phys. 2011. V. 11, N 13. P. 6367–6386.
  11. Popovicheva O.B., Kistler M., Kireeva E.D., Persiantseva N.M., Timofeeva M.A., Sрoniyac N.K., Kopejkin V.M. Sostav i mikrostruktura aerozolya zadymlennoj atmosfery g. Moskvy v usloviyah ekstremal'nyh pozharov avgusta 2010 year // Izv. RAN. Fiz. atmosf. i okeana. 2017. V. 53, N 1. P. 56–65.
  12. Sengupta D., Samburova V., Bhattarai C., Watts A.C., Moosmüller H., Khlystov A.Y. Polar semivolatile organic compounds in biomass-burning emissions and their chemical transformations during aging in an oxidation flow reactor // Atmos. Chem. Phys. 2020. V. 20, N 13. P. 8227–8250.
  13. Senashova V.A., Aniskina A.A., Plyashechnik M.A., Kostyakova T.V. Komponentnyj sostav letuchih soedinenij hvojnyh v usloviyah Srednej Sibiri // Himiya rastitel'nogo syr'ya. 2014. N 1. P. 77–85.
  14. Simoneit B.R.T. A review of biomarker compounds as source indicators and tracers for air pollution // Environ. Sci. Pollut. Res. 1999. V. 6, N 3. P. 159–169.
  15. Oros D.R., Simoneit B.R.T. Identification and emission factors of molecular tracers in organic aerosols from biomass burning Part 1. Temperate climate conifers // Appl. Geochem. 2001. V. 16, N 13. P. 1513–1544.
  16. Popova S.A., Makarov V.I. Himicheskij sostav produktov tleyushchego goreniya drevesiny sosny obyknovennoj (Pinus sylvestris) i listvennitsy sibirskoj (Larix sibirica), bagul'nika bolotnogo (Ledum palustre) i lishajnika (Cladonia sp.) // Optika atmosf. i okeana. 2011. V. 24, N 6. P. 488–492.
  17. Zangrando R., Barbaro E., Zennaro P., Rossi S., Kehrwald N.M., Gabrieli J., Gambaro A. Molecular markers of biomass burning in Arctic aerosols // Environ. Sci. Technol. 2013. V. 47, N 15. P. 8565–8574.
  18. Rengarajan T., Rajendran P., Nandakumar N., Lokeshkumar B., Rajendran P., Nishigaki I. Exposure to polycyclic aromatic hydrocarbons with special focus on cancer // Asian Pac. J. Trop. Biomed. 2015. V. 5, N 3. P. 182–189.
  19. Wiriya W., Chantara S., Sillapapiromsuk S., Lin N.H. Emission profiles of PM10-bound polycyclic aromatic hydrocarbons from biomass burning determined in chamber for assessment of air pollutants from open burning // Aerosol Air Qual. Res. 2016. V. 16, N 11. P. 2716–2727.
  20. Dvorska A., Lammel G., Klanova J. Use of diagnostic ratios for studying source apportionment and reactivity of ambient polycyclic aromatic hydrocarbons over Central Europe // Atmos. Environ. 2011. V. 45, N 2. P. 420–427.
  21. Pies C., Hoffmann B., Petrowsky J., Yang Y., Ternes T.A., Hofmann T. Characterization and source identification of polycyclic aromatic hydrocarbons (PAHs) in river bank soils // Chemosphere. 2008. V. 72. P. 1594–1601.
  22. Zhang W., Zhang S., Wan C., Yue D., Ye Y., Wang X. Source diagnostics of polycyclic aromatic hydrocarbons in urban road runoff, dust, rain and canopy throughfall // Environ. Pollut. 2008. V. 153. P. 594–601.
  23. Rakhimov R.F., Makienko E.V. Nekotorye metodicheskie dopolneniya k resheniyu obratnoj zadachi dlya vosstanovleniya parametrov dispersnoj struktury dymov smeshannogo sostava // Optika atmosf. i okeana. 2010. V. 23, N 3. P. 183–189; Rakhimov R.F., Makienko E.V. Some methodic additions to the solution of the inverse problem for the reconstruction of the parameters of the disperse structure of mixed smokes // Atmos. Ocean. Opt. 2010. V. 23, N 4. P. 259–265.
  24. Rakhimov R.F., Kozlov V.S., Shmargunov V.P. O vremennoj dinamike kompleksnogo pokazatelya prelomleniya i mikrostruktury chastits po dannym spektronefelometricheskih izmerenij v smeshannyh dymah // Optika atmosf. i okeana. 2011. V. 24, N 10. P. 887–897; Rakhimov R.F., Kozlov V.S., Shmargunov V.P. Time dynamics of the complex refractive index and particle microstructure according to data of spectronephelometer measurements in mixed composition smokes // Atmos. Ocean. Opt. 2012. V. 25, N 1. P. 51–61.
  25. Popovicheva O.B., Kozlov V.S., Engling G., Diapouli E., Persiantseva N.M., Timofeev M.A., Fan T.-S., Saraga D., Eleftheriadis K. Small-scale study of Siberian biomass burning: I. Smoke microstructure // Aerosol Air Qual. Res. 2015. V. 15. P. 117–128.
  26. Kalogridis A.C., Popovicheva O.B. Engling G., Diapouli E., Kawamura K., Tachibana E., Eleftheriadis K. Smoke aerosol chemistry and aging of Siberian biomass burning emissions in a large aerosol chamber // Atmos. Environ. 2018. V. 185. P. 15–28.
  27. Popovicheva O.B., Kozlov V.S., Rakhimov R.F., Shmargunov V.P., Kireeva E.D., Persiantseva N.M., Timofeev M.A., Engling G., Eleftheriadis K., Diapouli E., Panchenko M.V., Zimmermann R., Schnelle-Kreis J. Optiko-mikrofizicheskie i fiziko-himicheskie harakteristiki dymov goreniya sibirskih biomass: eksperimenty v aerozol'noj kamere // Optika atmosf. i okeana. 2016. V. 29, N 4. P. 323–331; Popovicheva O.B., Kozlov V.S., Rakhimov R.F., Shmargunov V.P., Kireeva E.D., Persiantseva N.M., Timofeev M.A., Engling G., Eleftheriadis K., Diapouli E., Panchenko M.V., Zimmermann R., Schnelle-Kreis J. Optical-microphysical and physical-chemical characteristics of Siberian biomass burning: Experiments in aerosol chamber // Atmos. Ocean. Opt. 2016. V. 29, N 5. P. 492–500.
  28. Cain J.P., Gassman P.L., Wang H., Laskin A. Micro-FTIR study of soot chemical composition–evidence of aliphatic hydrocarbons on nascent soot surfaces // Phys. Chem. 2010. V. 12, N 20. P. 5206–5218.
  29. Thepnuan D., Chantara S., Lee C.T., Lin N.H., Tsai Y.I. Molecular markers for biomass burning associated with the characterization of PM2.5 and component sources during dry season haze episodes in Upper South East Asia // Sci. Total Environ. 2019. V. 658. P. 708–722.
  30. Froehner S., Maceno M., Machado K.S., Grube M. Health risk assessment of inhabitants exposed to PAHs particulate matter in air // J. Environ. Sci. Health. A. 2011. V. 46, N 8. P. 817–823.
  31. U.S. EPA. Development of a Relative Potency Factor (Rpf) Approach for Polycyclic Aromatic Hydrocarbon (PAH) Mixtures (External Review Draft, Suspended). U.S. Environmental Protection Agency, Washington, DC, EPA/635/R-08/012A, 2010. 622 p. URL: https:// cfpub.epa.gov/si/si_public_record_report.cfm?Lab=NCEA&dirEntryId=194584 (last access: 6.11.2021).
  32. Samburova V., Connolly J., Gyawali M., Yatavelli R.L., Watts A.C., Chakrabarty R.K., Khlystov A. Polycyclic aromatic hydrocarbons in biomass-burning emissions and their contribution to light absorption and aerosol toxicity // Sci. Total Environ. 2016. V. 568. P. 391–401.
  33. Tobiszewski M., Namiesnik J. PAH diagnostic ratios for the identification of pollution emission sources // Environ. Pollut. 2012. V. 162. P. 110–119.