Vol. 35, issue 06, article # 13

Arkhipov V. A., Basalaev S. A., Gol’din V. D., Perfilieva K. G., Usanina A. S. Method for studying the effect of the gas injection from the surface of a solid sphere on the drag coefficient. // Optika Atmosfery i Okeana. 2022. V. 35. No. 06. P. 510–514. DOI: 10.15372/AOO20220613 [in Russian].
Copy the reference to clipboard

Abstract:

Method for studying the effect of the mass flow from the particle surface on the drag coefficient in a wide range of Reynolds numbers is suggested. For this, two experimental setups have been developed and used for the study of the effect of air injection from the surface of a solid perforated sphere on the drag coefficient at various values of the velocity of injection flow in the range of Reynolds numbers of the airflow around a particle from 133 to 9900. It is shown that the drag coefficient of the particle decreases with an increase in the velocity of the gas injected from the surface of a solid spherical particle. The empirical equation for calculating the drag coefficient of a solid sphere in the self-similar regime depending on the ratio of the gas injection velocity and the airflow velocity has been derived from the regression analysis.

Keywords:

solid sphere, gas injection, drag coefficient, Reynolds number, transitional flow regime, self-similar flow regime, experimental study

References:

1.Terekhov V.I., Pahomov M.A. Teplomassoperenos i gidrodinamika v gazokapel'nyh potokah. Novosibirsk: Izd-vo NGTU, 2009. 284 p.
2. Vysokomornaya O.V., Kuznetsov G.V., Strizhak P.A. Isparenie i transformatsiya kapel' i bol'shih massivov zhidkosti pri dvizhenii cherez vysokotemperaturnye gazy. Novosibirsk: Izd-vo SO RAN, 2016. 302 p.
3. Sternin L.E., Shrajber A.A. Mnogofaznye techeniya gaza s chastitsami. M.: Mashinostroenie, 1994. 318 p.
4. Shrajber A.A. Mnogofaznye polidispersnye techeniya s peremennym fraktsionnym sostavom diskretnyh vklyuchenij // Itogi nauki i tekhniki: Kompleksnye i spetsial'nye razdely mekhaniki. M.: VINITI, 1988. P. 3–80.
5. Nikol'skij Yu.V., Hlopkov Yu.I. Teoreticheskoe i eksperimental'noe issledovanie obtekaniya sfery sverhzvukovym potokom maloj plotnosti s uchetom kondensatsii i ispareniya s poverhnosti // Uchenye zapiski TSAGI. 1989. V. 20, N 5. P. 118–122.
6. Koval' M.A., Stulov V.P., Shvets A.I. Eksperimental'noe issledovanie sverhzvukovogo obtekaniya zatuplennyh tel s sil'nym raspredelennym vduvom // Izv. AN SSSR. Mekhanika zhidkosti i gaza. 1978. N 3. P. 84–95.
7. Glotov O.G. Gorenie sfericheskih titanovyh aglomeratov v vozduhe. I. Eksperimental'nyj podhod // Fizika goreniya i vzryva. 2013. V. 49, N 3. P. 50–57.
8. Kelbaliev G.I. Koeffitsienty soprotivleniya tverdyh chastits, kapel' i puzyrej razlichnoj formy // Teoreticheskie osnovy himicheskoj tekhnologii. 2011. V. 45, N 3. P. 264–283.
9. Sposob opredeleniya koeffitsienta soprotivleniya sfericheskoj chastitsy pri vduve gaza s ee poverhnosti: Pat. 2700728. Russia, MPK G01N 15/10. Arhipov V.A., Basalaev S.A., Polenchuk S.N., Perfil'eva K.G., Yusupov R.A., Maslov E.A. NI Tom. gos. un-t. N 2018142181; Zayavl. 29.11.2018. Opubl. 19.09.2019. Byul. N 26.
10. Lojtsyanskij L.G. Mekhanika zhidkosti i gaza. M.: Drofa, 2003. 840 p.