Vol. 35, issue 04, article # 2

Razhev A. M., Churkin D. S., Trunov I. A., Tkachenko R. A. Neon laser with wavelengths of 540.1 and 614.3 nm pumped by an inductive pulsed cylindrical discharge. // Optika Atmosfery i Okeana. 2022. V. 35. No. 04. P. 261–265. DOI: 10.15372/AOO20220402 [in Russian].
Copy the reference to clipboard

Abstract:

Results of the study of features of the spectral, temporal, and spatial characteristics of the radiation from neutral neon atoms pumped by an inductive pulsed cylindrical discharge are presented. Lasing was obtained at wavelengths of 540.1 and 614.3 nm with optical pulse duration at levels of 13 ± 1 and 5 ± 1 ns (FWHM), respectively. The cross section of the laser radiation had the shape of a ring with a diameter of 33.1 ± 0.1 mm and a width of 5.6 ± 0.1 mm. The intensity distribution of the lasing ring was nonuniform and has a grain structure, typical of lasers operating in the amplified spontaneous emission mode. The grain region is inhomogeneous in form and size and shows a pronounced radial symmetry, which, according to our assumption, is due to the nature of the electric field in an inductive cylindrical discharge.

Keywords:

inductive pulsed cylindrical discharge, NeI laser, laser beam shape, amplified spontaneous emission

References:

1. Shahno E.A. Fizicheskie osnovy primeneniya lazerov v meditsine. SPb.: NIUITMO, 2012. 129 p.
2. Rogers R.R., Hostetler C.A., Hair J.W., Ferrare R.A., Liu Z., Obland M.D., Harper D.B., Cook A.L., Powell K.A., Vaughan M.A., Winker D.M. Assessment of the CALIPSO Lidar 532 nm attenuated backscatter calibration using the NASA LaRC airborne High Spectral Resolution Lidar // Atmos. Chem. Phys. 2011. N 11. P. 1295–1311.
3. Bell W.E. Ring discharge excitation of gas ion lasers // Appl. Phys. Lett. 1965. V. 7, N 7. P. 190–191.
4. Kazaryan M.A., Malikov M.M., Karpukhin V.T., Lyabin N.A. The use of inductive discharge for laser pumping of a copper vapor // J. Phys.: Conf. Ser. 2017. N 826. P. 1–8.
5. Batenin V.M., Lyabin N.A., Malikov M.M. Numerical simulation of a copper vapor laser with induction discharge and additional heating // Appl. Phys. 2020. N 5. P. 103–108.
6. Zhu P., Boswell R.W. A new argon-ion laser based on an electrodeless plasma // J. Appl. Phys. 1990. V. 68. N 5, P. 1981–1984.
7. Razhev A.M., Churkin D.S., Tkachenko R.A. MW peak-power UV inductive nitrogen laser // Appl. Phys. B. 2020. 126:104.
8. Zayarnyi D.A., Kholin I.V. Penningovskie lazery vysokogo davleniya 3p–3s-perekhodah neona s dlinami voln 703 i 725 nm // Quant. Electron. 2003. V. 33, N 6. P. 474–484.
9. Konak A.I., Mel’nikov S.P., Porkhaev V.V., Sinyanskii A.A. Harakteristiki lazera s yadernoj nakachkoj na perekhodah 3p–3s atoma neona // Quant. Electron. 1995. V. 22, N 3. P. 225–230.
10. Razhev A.M., Churkin D.S., Tkachenko R.A. Inductive laser on neon’s atomic transitions pumped by a pulsed inductive discharge // Appl. Phys. B. 2021. 127:152.
11. Ishchenko V.I., Lisitsyn V.N., Razhev A.M., Rautian S.G., Shalagin A.M. O rasshcheplenii linii izlucheniya impul'snyh lazerov na sverhsvetimosti // Pis'ma v ZhETF. 1974. V. 19, N 11. P. 669–672.
12. Babat G.I. Bezelektrodnye razryady i nekotorye svyazannye s nim voprosy // Vestn. elektroprom. 1942. P. 1–12.