Vol. 35, issue 04, article # 13

Andreev S. N., Tarakanov V. P. Quasi-neutrality of relativistic laser pulse accelerated proton beam. // Optika Atmosfery i Okeana. 2022. V. 35. No. 04. P. 326–329. DOI: 10.15372/AOO20220413 [in Russian].
Copy the reference to clipboard

Abstract:

Generation of a quasi-neutral beam of protons and electrons during the interaction of an ultra-high intensity laser pulse with an aluminum target with a layer of protons on the rear surface is studied. It is shown that the time of setting the quasi-neutrality of the proton beam is more than five time longer than the laser pulse duration.

Keywords:

proton beam, super-intense laser pulse, PIC simulation, quasi-neutrality

References:

1. Feldstein Y.I., Vorobjev V.G., Zverev V.L. Planetary features of aurorae: Results of the IGY (a review) // Geomagn. Aeron. (Engl. Transl.) 2010. V. 50. P. 413–435.
2. Gal'perin Yu.I., Poluektov I.A., Sobel'man I.I. O potoke i energeticheskom spektre protonov, otvetstvennyh za svechenie vodoroda v polyarnyh siyaniyah // Geomagnetizm i aeronomiya. 1966. V. 6. P. 633–649.
3. Basu B., Jasperse J.R., Robinson R.M., Vondrak R.R., Evans D.C. Linear transport theory of auroral proton precipitation: A comparison with observations // J. Geophys. Res. 1987. V. 92. P. 5920–5932.
4. Decker D.T., Kozelov B.V., Basu B., Jasperse J.R., Inanov V.E. Collisional degradation of the proton-H atom fluxes in the atmosphere: A comparison of theoretical techniques // J. Geophys. Res. 1996. V. 101. P. 26947–26960.
5. Ivanov V.E., Kozelov B.V. Prohozhdenie elektronnyh i protonno-vodorodnyh puchkov v atmosfere Zemli. Apatity: Izd-vo KNC RAN. 2001. 260 p.
6. Belyaev V.S., Matafonov A.P., Krainov V.P., Kedrov A.Yu., Zagreev B.V., Rusetsky A.S., Borisenko N.G., Gromov A.I., Lobanov A.V., Lisitsa V.S. Simultaneous investigation of the nuclear reactions 11B(p, 3a) and 11B(p, n)11C as a new tool for determining the absolute yield of alpha particles in pico­second plasmas // Phys. Atom. Nuclei. 2020. V. 83. P. 641–650.
7. Andreev S.N. First-principle modeling of ionization processes, bremsstrahlung radiation and nuclear reactions in a relativistic laser plasma // J. Eng. Phys. 2012. V. 6. P. 44–52.
8. Cowan T.E., Fuchs J., Ruhl H., Kemp A., Audebert P., Roth M., Stephens R., Barton I., Blazevic A., Brambrink E., Cobble J., Fernández J., Gauthier J.-C., Geissel M., Hegelich M., Kaae J., Karsch S., Le Sage G.P., Letzring S., Manclossi M., Meyroneinc S., Newkirk A., Pépin H., Renard-LeGalloudec N. Ultralow emittance, multi-meV proton beams from a laser virtual-cathode plasma accelerator // Phys. Rev. Lett. 2004. V. 92. P. 204801-1–204801-4.
9. Tarakanov V.P. Code KARAT in simulations of power microwave sources including Cherenkov plasma devices, vircators, orotron, E-field sensor, calorimeter etc. // EPJ Web Conf. 2017. V. 149. P. 04024.
10. Pukhov A. Three-dimensional simulations of ion acceleration from a foil irradiated by a short-pulse laser // Phys. Rev. Lett. 2001. V. 86, N 16. P. 3562–3565.
11. Andreev S.N., Tarakanov V.P. Electron and proton aсceleration in superstrong laser field: Simulations and models // Plasma Phys. Rep. 2009. V. 35, N 12. P. 1013–1020.