Vol. 35, issue 03, article # 8

Kalinin N. A., Bykov A. V., Shikhov A. N. Object-oriented assessment of short-term forecast of convective hazardous weather events with the WRF model in Perm region. // Optika Atmosfery i Okeana. 2022. V. 35. No. 03. P. 232–240. DOI: 10.15372/AOO20220308 [in Russian].
Copy the reference to clipboard

Abstract:

This study presents an accuracy assessment of the forecasts of hazardous convective weather events made with the WRF v.4.2 atmospheric model for Perm region and adjacent area for the period from May 4 to August 25, 2021. The WRF model forecasts had a 27-h lead time; the model grid step was 5 km. To reduce the probability of false alarms, scale-dependent parameterization of convection was used. The sample of squalls and large hail events was compiled based on the weather station reports, damage reports, and satellite images of forest damage. It includes 56 events. The sample of heavy rainfall events was compiled from the weather stations data only. For the same period, the WRF model predicted 30 squalls events (³ 25 m/s-1) and 63 heavy rainfall events (³ 30 mm/h). Supercells and tornado events are also considered. For squall events, we performed a cross-validation of the simulated and observed events using the distance (50 km) and time (± 3 h) threshold criteria. The accuracy of heavy precipitation was evaluated using the SCI and EDI indices. Overall, the forecasts accuracy for heavy precipitation was unsatisfactory. For squall events, 36% of them were successfully predicted, including the events that caused most substantial damage. Despite the high proportion of event omission (which prevail over false alarms), the forecasts of squalls with the WRF model in this configuration may be useful in preventing damage.

Keywords:

squall, heavy rainfall, short-term forecast, WRF model, scale-dependent convection parameterization, object-oriented assessment, event omission, false alarm

Figures:

References:

  1. Shikhov A., Chernokulsky A., Kalinin N., Bykov A., Pischalnikova E. Climatology and formation environments of severe convective windstorms and tornadoes in the Perm region (Russia) in 1984–2020 // Atmos. 2021. V. 12. N 1407.
  2. Yano J.-I., Ziemiański M.Z., Cullen M., Termonia P., Onvlee J., Bengtsson L., Carrassi A., Davy R., Deluca A., Gray S.L., Homar V., Köhler M., Krichak S., Michaelides S., Phillips V.T.J., Soares P.M.M., Wyszogrodzki A.A. Scientific challenges of convective-scale numerical weather prediction // Bull. Am. Meteorol. Soc. 2018. V. 99, N 4. P. 699–710.
  3. Weisman M.L., Davis C., Wang W., Manning K.W., Klemp J.B. Experiences with 0-36-h explicit convective forecasts with the WRF-ARW model // Weather Forecast. 2008. V. 23, N 3. P. 407–437.
  4. Xue M., Wang D., Gao J., Brewster K., Droegemeier K.K. The Advanced Regional Prediction System (ARPS), storm-scale numerical weather prediction and data assimilation // Meteorol. Atmos. Phys. 2003. V. 82. P. 139–170.
  5. Kain J.S., Weiss S.J., Levit J.J., Baldwin M.E., Bright D.R. Examination of convection-allowing configurations of the WRF model for the prediction of severe convective weather // Weather Forecast. 2006. V. 21, N 2. P. 167–181.
  6. Kain J.S. Weiss S.J., Bright D.R., Baldwin M.E., Levit J.J., Carbin G.W., Schwartz C.S., Weisman M.L., Droegemeier K.K., Weber D.B., Thomas K.W. Some practical considerations regarding horizontal resolution in the first generation of operational convection-allowing NWP // Weather Forecast. 2008. V. 23, N 5. P. 931–952.
  7. Powers J.G., Klemp J.B., Skamarock W.C., Davis C.A., Dudhia J., Gill D.O., Coen J.L., Gochis D.J., Ahmadov R., Peckham S.E., Grell G.A., Michalakes J., Trahan S., Benjamin S.G., Alexander C.R., Dimego G.J., Wang W., Schwartz C.S., Romine G.S., Liu Z., Snyder C., Chen F., Barlage M.J., Yu W., Duda M.G. The Weather Research and Forecasting Model: Overview, system efforts, and future directions // Bull. Am. Meteorol. Soc. 2017. V. 98. P. 1717–1737.
  8. Dmitrieva T.G., Peskov B.E. Chislennyj prognoz s mezosinopticheskim utochneniem dvuh sluchaev osobo sil'nyh shkvalov na Evropejskoj chasti Russia letom 2010 year // Meteorol. i gidrol. 2013. N 2. P. 18–30.
  9. Shihov A.N., Bykov A.V. Izuchenie dvuh sluchaev sil'nyh smerchej v Predural'e // Sovremennye problemy distantsionnogo zondirovaniya Zemli iz Kosmosa. 2015. V. 12, N 3. P. 124–133.
  10. Novitskij M.A., Pavlyukov Yu.B., Shmerlin B.Ya., Mahnorylova S.V., Serebryanik N.I., Petrichenko S.A., Tereb L.A., Kalmykova O.V. Bashkirskij smerch: vozmozhnosti analiza i prognoza smercheopasnoj situatsii // Meteorol. i gidrol. 2016. N 10. P. 30–40.
  11. Novitskij M.A., Shmerlin B.Ya., Petrichenko S.A., Tereb L.A., Kalmykova O.V. O sovmestnom raschete polej vertikal'noj skorosti i konvektivnyh indeksov v modeli WRF dlya analiza i prognoza smercheopasnyh situatsij // Meteorol. i gidrol. 2018. N 9. P. 14–26.
  12. Kalinin N.A., Shihov A.N., Bykov A.V., Azhigov I.O. Usloviya vozniknoveniya i kratkosrochnyj prognoz sil'nyh shkvalov i smerchej na Evropejskoj territorii Rossii // Optika atmosf. i okeana. 2019. V. 32, N 1. P. 62–69; Kalinin N.A., Shikhov A.N., Bykov A.V., Azhigov I.O. Conditions for the appearance and short-time prediction of strong squalls and tornadoes in the European part of Russia // Atmos. Ocean. Opt. 2019. V. 32, N 3. P. 334–344.
  13. Romanskij S.O., Verbitskaya E.M., Sulyandziga P.B. Rezul'taty chislennogo modelirovaniya formirovaniya i razvitiya intensivnoj konvektsii, vyzvavshej smerch v Blagoveshchenske 31 july 2011 year // Meteorol. i gidrol. 2020. N 6. P. 25–36.
  14. Chernokulsky A., Shikhov A., Bykov A., Azhigov I. Satellite-based study and numerical forecasting of two tornado outbreaks in the Ural region in June 2017 // Atmosphere. 2020. N 11. N 1146.
  15. Chernokulsky A., Shikhov A., Bykov A., Kalinin N., Kurgansky M., Sherstyukov B., Yarinich Y. Diagnosis and modelling of two destructive derecho events in European Russia in the summer of 2010 // Atmos. Res. 2021. N 105928. DOI: 10.1016/j.atmosres.2021.105928.
  16. Vel'tishchev N.F., Zhupanov V.D., Pavlyukov Yu.B. Kratkosrochnyj prognoz sil'nyh osadkov i vetra s pomoshch'yu razreshayushchih konvektsiyu modelej WRF // Meteorol. i gidrol. 2011. N 1. P. 5–18.
  17. Vel'tishchev N.F., Zhupanov V.D. Chislennye prognozy pogody po negidrostaticheskim modelyam obshchego pol'zovaniya WRF-ARW i WRF-NMM // 80 let Gidromettsentru Rossii. M., Gidromettsentr Russia, 2010. P. 94–135.
  18. Zaripov R.B., Pavlyukov Yu.B., Shumilin A.A., Travov A.V. Ispol'zovanie radiolokatsionnoj informatsii pri otsenke prognoza pogody s vysokim razresheniem // Gidromet. issled. i prognozy. 2018. N 2. P. 60–86.
  19. Zajko P.O, Krasovskij A.N, Borodko S.K. Sovershenstvovanie mezomasshtabnogo chislennogo prognozirovaniya pogody WRF-ARW v Respublike Belarus' putem assimilyatsii radiolokatsionnyh dannyh o vetre i otrazhaemosti // Zhurn. Belorus. gos. un-ta. Geografiya. Geologiya. 2020. N 2. P. 3–13.
  20. Berkovich L.V., Tkacheva Yu.V. Uspeshnost' prognoza sil'nyh osadkov v Krasnodarskom i Stavropol'skom krayah v letnij period 2013 year po modeli WRF-ARW // Tr. Gidromettsentra Russia. 2014. Iss. 351. P. 23–33.
  21. Kalinin N.A., Shihov A.N., Bykov A.V., Tarasov A.V. Analiz rezul'tatov chislennogo prognoza livnevyh osadkov po modeli WRF s primeneniem razlichnyh parametrizatsij konvektsii (na primere territorii Permskogo kraya) // Gidromet. issled. i prognozy. 2019. N 3. P. 43–59.
  22. Vil'fand R.M., Rivin G.S., Rozinkina I.A. Sistema COSMO-Ru negidrostaticheskogo mezomasshtabnogo kratkosrochnogo prognoza pogody Gidromettsentra Rossii: pervyj etap realizatsii i razvitiya // Meteorol. i gidrol. 2010. N 8. P. 5–20.
  23. Rivin G.S., Vil'fand R.M., Kiktev D.B., Rozinkina I.A., Tudrij K.O., Blinov D.V., Varentsov M.I., Samsonov T.E., Bundel' A.Yu., Kirsanov A.A., Zaharchenko D.I. Sistema chislennogo prognozirovaniya yavlenij pogody, vklyuchaya opasnye, dlya Moskovskogo megapolisa: razrabotka prototipa // Meteorol. i gidrol. 2019. N 11. P. 33–45.
  24. Varentsov M., Wouters H., Platonov V., Konstantinov P. Megacity-induced mesoclimatic effects in the lower Atmosphere: A modeling study for multiple summers over Moscow, Russia // Atmos. 2018. V. 9. N 50.
  25. Davis C.A., Brown B., Bullock R. Object-based verification of precipitation forecasts. Part I: Methodology and application mesoscale rain areas // Mon. Weather. Rev. 2006. V. 134. P. 1772–1784.
  26. Kalinin N.A., Shikhov A.N., Bykov A.V., Pomortseva A.A., Abdullin R.K., Azhigov I.O. Usloviya formirovaniya i kratkosrochnyj prognoz konvektivnyh opasnyh yavlenij pogody v Ural'skom regione v teplyj period 2020 year // Optika atmosf. i okeana. 2021. V. 34, N 1. P. 46–56; Kalinin N.A., Shikhov A.N., Bykov A.V., Pomortseva A.A., Abdullin R.K., Azhigov I.O. Formation conditions and short-term forecast of convective hazardous weather events in the Ural region in the warm period of 2020 // Atmos. Ocean. Opt. 2021. V. 34, N 3. P. 250–262.
  27. Taszarek M., Pilguj N., Orlikowski J., Surowiecki A., Walczakiewicz S., Pilorz W., Piasecki K., Pajurek L., Półrolniczak M. Derecho evolving from a mesocyclone–a study of 11 August 2017 severe weather outbreak in Poland: Event analysis and high-resolution simulation // Mon. Weather Rev. 2019. V. 147, N 6. P. 2283–2306.
  28. Arhiv fakticheskoj pogody po meteostantsiyam [Elektronnyj resurs]. URL: http://pogodaiklimat.ru/archive.php (data obrashcheniya: 17.12.2021).
  29. Nauchno-tekhnicheskij zhurnal «Meteorologiya i gidrologiya». Elektronnyj resurs: http://mig-journal.ru/archive (data obrashcheniya: 17.12.2021).
  30. European Severe Weather Database. URL: https:// eswd.eu/ (дата обращения: 17.12.2021).
  31. Shikhov A.N., Chernokulsky A.V., Azhigov I.O., Semakina A.V. A satellite-derived database for stand-replacing windthrow events in boreal forests of European Russia in 1986–2017 // Earth Syst. Sci. Data. 2020. V. 12. P. 3489–3513.
  32. Hong S.-Y., Dudhia J. Next-generation numerical weather prediction: Bridging parameterization, explicit clouds, and large eddies // Bull. Am. Meteorol. Soc. 2012. V. 93. P. ES6–ES9.
  33. Arakawa A., Wu C.M. A unified representation of deep moist convection in numerical modeling of the atmosphere. Part I // J. Atmos. Sci. 2013. V. 70. P. 1977–1992.
  34. Arakawa A., Schubert W.H. Interaction of a cumulus cloud ensemble with the large-scale environment. Part I // J. Atmos. Sci. 1974. V. 31. P. 674–701.
  35. Lim K-S., Hong S.-Y., Yoon J.-H., Han J. Simulation of the summer monsoon rainfall over East Asia using the NCEP GFS cumulus parameterization at different horizontal resolutions // Weather Forecast. 2014. V. 29. P. 1143–1154.
  36. Kwon Y.C., Hong S.-Y. A mass-flux cumulus parameterization scheme across gray-zone resolutions // Mon. Weather Rev. 2017. V. 145, N 2. P. 583–598.
  37. Clark A.J., Gao J., Marsh P.T., Smith T., Kain J.S., Correia Jr., Xue M., Kong F. Tornado pathlength forecasts from 2010 to 2011 using ensemble updraft helicity // Weather Forecast. 2013. V. 28, N 2. P. 387–407.
  38. Sobash R.A., Romine G.S., Schwartz G.S. Explicit Forecasts of Low-Level Rotation from Convection-Allowing Models for Next-Day Tornado Prediction // Weather Forecast. 2016. V. 31. P. 1591–1614.
  39. Kisel'nikova V.Z. Ob"ektno-orientirovannaya otsenka kachestva prognoza osadkov WRF // Meteorol. i gidrol. 2013. N 4. P. 5–10.
  40. Murav'ev A.V., Kiktev D.B., Bundel' A.Yu., Dmitrieva T.G., Smirnov A.V. Verifikatsiya prognozov meteorologicheskih yavlenij so znachitel'nymi vozdejstviyami v rajone provedeniya Olimpiady «Sochi-2014». Part I. Determinirovannye prognozy v testovyj period // Meteorol. i gidrol. 2015. N 9. P. 31–48.
  41. Shikhov A.N., Bykov A.V., Abdullin R.K. Short-range forecast of heavy rainfall over the Kama River basin in 2019 with atmospheric models ICON, GFS and WRF // IOP Conf. Series: Earth and Environ. Sci. 2020. V. 611. N 012016.
  42. FGBU «Ural'skoe UGMS» [Elektronnyj resurs]. URL: http://svgimet.ru/?p=47930 (data obrashcheniya: 17.12.2021).