Vol. 35, issue 03, article # 7

Lavrent'ev N. A., Rodimova O. B., Fazliev A. Z. Systematization of published scientific graphics characterizing the water vapor continuum absorption: II Publications of 1981–2000. // Optika Atmosfery i Okeana. 2022. V. 35. No. 03. P. 217–231. DOI: 10.15372/AOO20220307 [in Russian].
Copy the reference to clipboard

Abstract:

The article provides a brief overview of the collection of GrafOnto water absorption plots in the 1981–2000 interval. This collection is hosted in the W@DIS information system (wadis.saga.iao.ru). Most of the ordinates of the plots belong to three groups of functions describing the dependence of the absorption coefficient and the transmission function on wavenumber, the dependence of the absorption coefficient on temperature and the correction factor c for the frequency-dependent Lorentz contour. The article describes two ways to find plots in the collection: a simple search by three publication attributes and an attribute search by 14 properties, including the properties of a primitive plot, substance, and function parameters and properties of an information resource and publication. Such a search is necessary for users to find the desired primitive plots, and is used when combining primitive plots into a compound plot taking into account the user's requirements.

Keywords:

W@DIS information system, water continuum absorption plot, combining primitive plots, attribute search for plots

References:

  1. Burch D.E. Continuum absorption by atmospheric H2O // Proc. SPIE. 1981. V. 277. P. 28–39. DOI: 10.1117/12.931899.
  2. Robertson D.C., Bernstein L.S., Haimes R., Wunderligh J., Vega L. 5 cm-1 band model option to LOWTRAN5 // Appl. Opt. 1981. V. 20. P. 3218–3226. DOI: 10.1364/AO.20.003218.
  3. Burch D.E. Continuum Absorption by H2O. Report AFGL-TR-81-00300. 1982. 46 p.
  4. Tanaka M., Nakazawa T., Fukabori M. Absorptions of the rst, 0.8 mm and a bands of the water vapor // J. Quant. Spectrosc. Radiat. Transfer. 1982. V. 28, N 6. P. 463–470. DOI: 10.1016/0022-4073(82)90012-7.
  5. Thomas M.E., Nordstrom R.J. The N2-broadened water vapor absorption line shape and infrared continuum absorption – II. Implementation of the line shape // J. Quant. Spectrosc. Radiat. Transfer. 1982. V. 28, N 2. P. 103–112. DOI: 10.1016/0022-4073(82)90086-3.
  6. Aref'ev V.N., Pogadaev B.N., Sizov N.I. Issledovanie pogloshcheniya izlucheniya perestraivaemogo СО2-lazera vodyanym parom v diapazone 9–11 mm // Kvant. elektron. 1983. V. 10, N 3. P. 496–502.
  7. Hinderling J., Sigrist M.W., Kneubuhl F.K. Laser photoacoustic spectroscopy in supersaturated water vapor // J. Phys. Colloque. 1983. V. 44, N C6. P. C6-559–C6-564.
  8. Kuznetsov M.N. Raschet pogloshcheniya v kryl'yah monomera N2O v okne 8–13 mm // Izv AN SSSR. Fiz. atmosf. okeana. 1983. V. 19. P. 163–166.
  9. Loper G.L., O’Neil M.A., Gelbwachs J.A. Water-vapor continuum CO2 laser absorption spectra between 27 °C and -10 °C // Appl. Opt. 1983. V. 22. P. 3701–3710. DOI: 10.1364/AO.22.003701.
  10. Salimian S., Hanson R.K. Absorption measurements of H2O at high temperatures using a CO laser // J. Quant. Spectrosc. Radiat. Transfer. 1983. V. 30, N 1. P. 1–7. DOI: 10.1016/0022-4073(83)90066-3.
  11. Telegin G.V., Fomin V.V. Izmenenie s vysotoj kontinual'nogo pogloshcheniya v atmosfernom okne prozrachnosti 8–12 mm // Izv AN SSSR. Fiz. atmosf. okeana. 1983. V. 19, N 9. P. 995–998.
  12. Burch D.E., Alt R.L. Continuum Absorption by H2O in the 700–1200 cm-1 and 2400–2800 cm-1 Windows. Report AFGL-TR-84-0128 1984. 31 p.
  13. Fedoseev L.I., Koukin L.M. Comparison of the results of summer and winter measurements of atmospheric water vapor absorption at wavelengths 1.5–1.55 mm // Int. J. Infrared Millim. Waves. 1984. V. 5. P. 953–963.
  14. Furashov N.I., Katkov V.Yu., Ryadov V.Ya. On the anomalies in submillimeter absorption spectrum of atmospheric water vapor // Int. J. Infrared Millim. Waves. 1984. V. 5, N 7. P. 971–984. DOI: 10.1007/BF01009586.
  15. Hinderling J., Meyer P., Sigrist M.W. Temperature dependence of the IR water-vapor absorption // Int. J. Infrared Millim. Waves. 1984. V. 5, N 4. P. 547–558. DOI: 10.1007/BF01010151.
  16. Burch D.E. Absorption by H2O in narrow windows between 3000–4200 cm-1. Report AFGL-TR-85-0036. 1985. 37 p.
  17. Furashov N.I., Katkov V.Yu. Humidity dependence of the atmospheric absorption coefficient in the transparency windows cenered at 0.88 and 0.73 mm // Int. J. Infrared Millim. Waves. 1985. V. 6, N 8. P. 751–764. DOI: 10.1007/BF01011951.
  18. Hinderling J., Sigrist M.W., Kneubuhl F.K. Pure rotational transitions of H2O molecule in the 8–14 mm atmospheric window // Infrared Phys. 1985. V. 25, iss. 1–2. P. 491–496. DOI: 10.1016/0020-0891(85)90126-5.
  19. Liebe H.J. An updated model for millimeter wave propagation in moist air // Radio Sci. 1985. V. 20, N 5. P. 1069–1089.
  20. Thomas M.E., Nordstrom R.J. Line shape model for describing infrared-absorption by water vapor // Appl. Opt. 1985. V. 24, N 21. P. 3526–3530.
  21. Hinderling J., Sigrist M.W., Kneubuhl F.K. Field and laboratory experiments on the 8 to 14 mm spectral window of the terrestrial atmosphere // Int. J. Infrared Millim. Waves. 1986. V. 7, N 4. P. 683–713.
  22. Hinderling J., Sigrist M.W., Kneubuhl F.K. Laser-photoacoustic spectroscopy of water-vapor continuum and line absorption in the 8 to 14-mm atmospheric window // Infrared Phys. 1987. V. 27, N 2. P. 63–120. DOI: 10.1016/0020-0891(87)90013-3.
  23. Rosenkranz P.W. Pressure broadening of rotational bands, II. Water vapor from 300 to 1100 cm-1 // J. Chem. Phys. 1987. V. 87, N 1. P. 163–170.
  24. Varanasi P., Chudamani S. Self- and N2-broadened spectra of water vapor between 7.5 and 14.5 mm // J. Quant. Spectros. Radiat. Transfer. 1987. V. 38, N 6. P. 407–412. DOI: 10.1016/0022-4073(87)90094-X.
  25. Varanasi P. On the nature of the infrared spectrum of water vapor between 8 and 14 mm // J. Quant. Spectros. Radiat. Transfer. 1988. V. 40, N 3. P. 169–175. DOI: 10.1016/0022-4073(88)90110-0.
  26. Aref'ev V.N. Molekulyarnoe pogloshchenie vodyanym parom izlucheniya v okne otnositel'noj prozrachnosti atmosfery 8–13 mm // Optika atmosf. 1989. V. 2, N 10. P. 1034–1054.
  27. Clough S.A., Kneizys F.X., Davies R.W. Line shape and the water vapor continuum // Atmos. Res. 1989. V. 23, iss. 3–4. P. 229–241.
  28. Davidson D.F., Chang A.Y., Kohse-Höinghaus K., Hanson R.K. High temperature absorption coefficients of O2, NH3, and H2O for broadband ArF excimer laser radiation // J. Quant. Spectros. Radiat. Transfer. 1989. V. 42, N 4. P. 267–278. DOI: 10.1016/0022-4073(89)90073-3.
  29. Ma Q., Tipping R.H. Water vapor continuum in the millimeter spectral region // J. Chem. Phys. 1990. V. 93, N 9. P. 6127–6139. DOI: 10.1063/1.458984.
  30. Ma Q., Tipping R.H. The atmospheric water continuum in the infrared: Extension of the statistical theory of Rozenkranz // J. Chem. Phys. 1990. V. 93, N 10. P. 7066–7075. DOI: 10.1063/1.459429.
  31. Thomas M.E. Infrared and millimetre-wavelength absorption in the atmospheric windows by water vapour and nitrogen: Measurements and models // Infrared Phys. 1990. V. 30, N 2. P. 161–174. DOI: 10.1016/002 0-0891(90)90027-S.
  32. Grant W.B. Water vapor absorption coefficients in the 8–13 mm spectral region: A critical review // Appl. Opt. 1990. V. 29, N 4. P. 451–462. https://doi.org/10.1364/AO.29.000451.
  33. Aref'ev V.N. Molekulyarnoe pogloshchenie izlucheniya v atmosfernom okne otnositel'noj prozrachnosti 8–13 mm (Obzor) // Izv AN SSSR. Fiz. atmosf. okeana. 1991. V. 27, N 11. P. 1187–1225.
  34. Bauer A., Godon M. Temperature dependence of water-vapor absorption in line wings at 190 GHz // J. Quant. Spectros. Radiat. Transfer. 1991. V. 46, N 3. P. 211–220.
  35. Delaye C.T., Thomas M.E. Atmospheric continuum absorption models // Proc. SPIE. 1991. V. 1487. P. 91–298. DOI: 10.1117/12.46570.
  36. Ma Q., Tipping R.H. A far wing line shape theory and its application to the water continuum. I // J. Chem. Phys. 1991. V. 95, N 9. P. 6290–6301. DOI: 10.1063/1.461549.
  37. Godon M., Carlier J., Bauer A. Laboratory studies of water vapor absorption in the atmospheric window at 213 GHz // J. Quant. Spectros. Radiat. Transfer. 1992. V. 47, N 4. P. 275–285. https://doi.org/10.1016/0022-4073(92)90146-U.
  38. Kilsby C.G., Edwards D.P., Saunders R.W., Foot J.S. Water-vapour continuum absorption in the tropics: Aircraft measurements and model comparisons // Q. J. R. Meteorol. Soc. 1992. V. A118, iss. 506. P. 715–748. DOI: 10.1002/qj.49711850606.
  39. Ma Q., Tipping R.H. A far wing line shape theory and its application to the water vibrational bands. II // J. Chem. Phys. 1992. V. 96, N 12. P. 8655–8663. DOI: 10.1063/1.462272.
  40. Ma Q., Tipping R.H. A far wing line shape theory and its application to the foreign-broadened water continuum absorption. III // J. Chem. Phys. 1992. V. 97, N 2. P. 818–828. DOI: 10.1063/1.463184.
  41. Davis G.R. The far-infrared continuum absorption of water vapour // J. Quant. Spectrosc. Radiat. Transfer. 1993. V. 50, N 6. P. 673–694.
  42. Hartmann J.M., Perrin M.Y., Ma Q., Tipping R.H. The infrared continuum of pure water wapor: Calculations and high-temperature measurements // J. Quant. Spectros. Radiat. Transfer. 1993. V. 49, N 6. P. 675–691. DOI: 10.1016/0022-4073(93)90010-F.
  43. Ma Q., Tipping R.H. A near-wing correction to the quasistatic far-wing line shape theory // J. Chem. Phys. 1994. V. 100, N 4. P. 2537–2546.
  44. Devir A.D., Neumann M., Lipson S.G., Oppenheim U.P. Water vapour continuum absorption in the 15- to 25 mm spectral region: Evidence for (H2O)2 in the atmosphere // Opt. Eng. 1994. V. 33, N 3. P. 746–750.
  45. Bauer A., Godon M., Carlier J., Ma Q. Water vapor absorption in the atmospheric window at 239 GHz // J. Quant. Spectrosc. Radiat. Transfer. 1995. V. 53, N 4. P. 411–423. DOI: 10.1016/0022-4073(95)90016-0.
  46. Tipping R.H., Ma Q. Theory of the water continuum and validations // Atmos. Res. 1995. V. 36, N 1–2. P. 69–94. DOI: 10.1016/0169-8095(94)00028-C.
  47. Tobin D.C., Strow L.L., Lafferty W.J., Olson W.B. Experimental investigation of the self- and N2-broadened continuum within the n2 band of water vapor // Appl. Opt. 1996. V. 35, N 24. P. 4724–4734. DOI: 10.1364/AO.35.004724.
  48. Rosenkranz P.W. Water vapor microwave continuum absorption: A comparison of measurements and models // Radio Sci. 1998. V. 33, N 4. P. 919–928. DOI: 10.1029/98RS01182.
  49. Ma Q., Tipping R.H. The averaged density matrix in the coordinate representation: Application to the calculation of the far-wing line shapes for H2O // J. Chem. Phys. 1999. V. 111, N 13. P. 5909–5921. DOI: 10.1063/1.479886.
  50. Ma Q., Tipping R.H. The density matrix of H2O–N2 in the coordinate representation: A Monte Carlo calculation of the far-wing line shape // J. Chem. Phys. 2000. V. 112, N 2. P. 574–584. DOI: 10.1063/1.480550.
  51. Vigasin A.A. Water vapor continuous absorption in various mixtures: Possible role of weakly bound complexes // J. Quant. Spectros. Radiat. Transfer. 2000. V. 64, N 1. P. 25–40.
  52. Keller-Rudek H., Moortgat G.K., Sander R., Sörensen R. The MPI-Mainz UV/VIS spectral atlas of gaseous molecules of atmospheric interest // Earth Sys. Sci. Data. 2013. V. 5. P. 365–373.
  53. Lavrentiev N.A., Rodimova O.B., Fazliev A.Z. Systematization of graphically plotted published spectral functions of weakly bound water complexes // Proc. SPIE. 2016. V. 10035. P. 100350C-1–100360C-12.
  54. Lavrentiev N.A., Rodimova O.B., Fazliev A.Z., Vigasin A.A. Systematization of published research graphics characterizing weakly bound molecular complexes with carbon dioxide // Proc. SPIE. 2017. V. 10466. P. OE [10455-286].
  55. Akhlestin A.Yu., Lavrentiev N., Rodimova O., Fazliev A. The continuum absorption: trust assessment of published graphical information // Proc. SPIE. 2019. V. 11208. P. 112080. DOI: 10.1117/12.2541741.
  56. Lavrent’ev N.A., Rodimova O.B., Fazliev A.Z. Systematization of published scientific graphics characterizing the water vapor continuum absorption. I. Publications of 1898–1980 // Proc. SPIE. 2018. V. 10833. P. 108330A-9. DOI: 10.1117/12.2504325.
  57. Rosenkranz P.W. Pressure broadening of rotational bands. I. A statistical theory // J. Chem. Phys. 1985. V. 83, N 12. P. 6139–6144.
  58. Fano U. Pressure broadening as a prototype of relaxation // Phys. Rev. 1963. V. 131, N 1. P. 259–268.
  59. Tvorogov S.D., Nesmelova L.I. Radiatsionnye protsessy v kryl'yah polos atmosfernyh gazov // Izv. AN SSSR. Fiz. atmosf. okeana. 1976. V. 12, N 6. P. 627–633.
  60. Nesmelova L.I., Rodimova O.B., Tvorogov S.D. Kontur spektral'noj linii i mezhmolekulyarnoe vzaimodejstvie. Novosibirsk: Nauka, 1986. 216 p.
  61. Nesmelova L.I., Rodimova O.B., Tvorogov S.D. Koeffitsient pogloshcheniya sveta v kryle polosy 4.3 mm СО2 // Izv. vuzov. Fiz. 1980. Iss. 10. P. 106–107.
  62. Nesmelova L.I., Rodimova O.B., Tvorogov S.D. Temperaturnaya zavisimost' koeffitsienta pogloshcheniya za kantom polosy 4.3 mm СО2 // Dokl. AN. SSSR. 1987. V. 294, N 1. P. 68–71.