Vol. 35, issue 03, article # 3

Nikitenko A. A., Timofeev Yu. M., Virolainen Ya. A., Nerobelov G. M., Poberovsky A. V. Comparison of CO2 measurements in stratosphere by ground-based and satellite methods. // Optika Atmosfery i Okeana. 2022. V. 35. No. 03. P. 191–194. DOI: 10.15372/AOO20220303 [in Russian].
Copy the reference to clipboard

Abstract:

Modern changes in the Earth's climate due to increase in greenhouse gas concentrations, primarily carbon dioxide, stimulate the monitoring of its content by various methods. In the study, we compared CO2 content in the lower stratosphere (12–18 km altitude layer) from ground-based Bruker 125HR spectrometer and satellite ACE instrument measurements in 2009–2019. The analysis of two measurement types shows a good agreement between them. Ground-based CO2 measurements, on average, exceed satellite data by 2.8 ppm (less than 1%), standard deviations of the differences are ~ 5.0 ppm. The correlation coefficient between two datasets is 0.77. Ground-based (Bruker 125HR) and satellite (ACE) CO2 measurements show weak seasonal variations, opposite to the variations in tropospheric CO2. The CO2 content in the lower stratosphere is maximal in summer and minimal in winter.

Keywords:

CO2 measurements in the stratosphere, carbon dioxide monitoring, ground-based spectroscopic measurements, satellite measurements, Bruker 125HR, ACE-FTS

References:

  1. IPCC. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge; New York: Cambridge University Press, 2013. 1535 p.
  2. Ciais P., Dolman A.J., Bombelli A., Duren R., Peregon A., Rayner P.J., Miller C., Gobron N., Kinderman G., Marland G., Gruber N., Chevallier F., Andres R.J., Balsamo G., Bopp L., Bréon F.-M., Broquet G., Dargaville R., Battin T.J., Borges A., Bovensmann H., Buchwitz M., Butler J., Canadell J.G., Cook R.B., DeFries R., Engelen R., Gurney K.R., Heinze C., Heimann M., Held A., Henry M., Law B., Luyssaert S., Miller J., Moriyama T., Moulin C., Myneni R.B., Nussli C., Obersteiner M., Ojima D., Pan Y., Paris J.-D., Piao S.L., Poulter B., Plummer S., Quegan S., Raymond P., Reichstein M., Rivier L., Sabine C., Schimel D., Tarasova O., Valentini R., Wang R., van der Werf G., Wickland D., Williams M., Zehner C. Current systematic carbon-cycle observations and the need for implementing a policy-relevant carbon observing system // Biogeosci. 2014. V. 11. P. 3547–3602. DOI: 10.5194/bg-11-3547-2014.
  3. A Guidebook on the Use of Satellite Greenhouse Gases Observation Data to Evaluate and Improve Greenhouse Gas Emission Inventories, 1-st / Matsunaga T., Maksyutov S. (eds.). Japan: Satellite Observation Center, National Institute for Environmental Studies, 2018. 129 p.
  4. Timofeev Yu.M. Issledovaniya atmosfery Zemli metodom prozrachnosti. SPb.: Nauka, 2016. 367 p.
  5. Kuai L., Wunch D., Shia R.-L., Connor B., Miller C., Yung Y. Vertically constrained CO2 retrievals from TCCON measurements // J. Quant. Spectrosc. Radiat. Transfer. 2012. V. 113, iss. 14. P. 1753–1761.
  6. Connor B.J., Sherlock V., Toon G., Wunch D., Wennber P.O. GFIT2: An experimental algorithm for vertical profile retrieval from near-IR spectra // Atmos. Meas. Tech. 2016. V. 9. P. 3513–3525. DOI: 10.5194/ amt-9-3513-2016.
  7. Timofeev Yu.M., Nerobelov G.M., Poberovskij A.V., Filippov N.N. Opredelenie soderzhaniya SO2 v troposfere i stratosfere nazemnym IK metodom // Izv. RAN. Fiz. atmosf. i okeana. 2021. V. 57, N 3. P. 322–333. DOI: 10.31857/S0002351521020115.
  8. Arshinov M.Yu., Belan B.D., Davydov D.K., Krekov G.M., Fofonov A.V., Babchenko S.V., Inoue G., Machida Т., Maksutov Sh., Sasakawa M., Shimoyama K. Dinamika vertikal'nogo raspredeleniya parnikovyh gazov v atmosfere // Optika atmosf. i okeana. 2012. V. 25, N 12. P. 1051–1061.
  9. Antokhina O.Yu., Antokhin P.N., Arshinova V.G., Arshinov M.Yu., Belan B.D., Belan S.B., Davydov D.K., Ivlev G.A., Kozlov A.V., Nédélec P., Paris J.-D., Rasskazchikova T.M., Savkin D.E., Simonenkov D.V., Sklyadneva T.K., Tolmachev G.N., Fofonov A.V. Vertikal'noe raspredelenie gazovyh i aerozol'nyh primesej vozduha nad Rossijskim sektorom Arktiki // Optika atmosf. i okeana. 2017. V. 30, N 12. P. 1043–1052; Antokhina O.Yu., Antokhin P.N., Arshinova V.G., Arshinov M.Yu., Belan B.D., Belan S.B., Davydov D.K., Ivlev G.A., Kozlov A.V., Nédélec P., Paris J.-D., Rasskazchikova T.M., Savkin D.E., Simonenkov D.V., Sklyadneva T.K., Tolmachev G.N., Fofonov A.V. Vertical distributions of gaseous and aerosol admixtures in air over the Russian Arctic // Atmos. Ocean. Opt. 2018. V. 31, N 3. P. 300–310.
  10. Reuter M., Buchwitz M., Schneising O., Noël S., Bovensmann H., Burrows J.P., Boesch H., Di Noia A., Anand J., Parker R.J., Somkuti P., Wu L., Hasekamp O.P., Aben I., Kuze A., Suto H., Shiomi K., Yoshida Yu., Morino I., Crisp D., O'Dell C.W., Notholt J., Petri C., Warneke T., Velazco V.A., Deutscher N.M., Griffith D.W.T., Kivi R., Pollard D.F., Hase F., Sussmann R., Té Y.V., Strong K., Roche S., Sha M.K., De Mazière M., Feist D.G., Iraci L.T., Roehl C.M., Retscher C., Schepers D. Ensemble-based satellite-derived carbon dioxide and methane column-averaged dry-air mole fraction data sets (2003–2018) for carbon and climate applications // Atmos. Meas. Tech. 2020. V. 13. P. 789–819. DOI: 10.5194/amt-13-789-2020.
  11. Timofeyev Yu., Virolainen Y., Makarova M., Poberovsky A., Polyakov A., Ionov D., Osipov S., Imha­sin H. Ground-based spectroscopic measurements of atmospheric gas composition near Saint Petersburg (Russia) // J. Mol. Spectrosc. 2016. V. 323. P. 2–14. DOI: 10.1016/j.jms.2015.12.007.
  12. Hase F., Hannigan J.W., Coffey M.T., Goldman A., Höpfner M., Jones N.B., Rinsland C.P., Wood S.W. Intercomparison of retrieval codes used for the analysis of high-resolution, ground-based FTIR measurements // J. Quant. Spectrosc. Radiat. Transfer. 2004. V. 87. P. 25–52.
  13. Barthlott S., Schneider M., Hase F., Wiegele A., Christner E., González Y., Blumenstock T., Dohe S., García O.E., Sepúlveda E., Strong K., Mendonca J., Weaver D., Palm M., Deutscher N.M., Warneke T., Notholt J., Lejeune B., Mahieu E., Jones N., Griffith D.W.T., Velazco V.A., Smale D., Robinson J., Kivi R., Heikkinen P., Raffalski U. Using XCO2 retrievals for assessing the long-term consistency of NDACC/FTIR data sets // Atmos. Meas. Tech. 2015. V. 8. P. 1555–1573. DOI:10.5194/amt-8-1555-2015.
  14. Virolainen Y.A., Nikitenko A.A., Timofeyev Y.M. Intercalibration of satellite and ground-based measurements of CO2 content at the NDACC St. Petersburg station // J. Appl. Spectrosc. 2020. V. 87, iss. 5. P. 888–892. DOI: 10.1007/s10812-020-01085-0.
  15. Virolainen Ya.A. Methodical aspects of the determination of carbon dioxide in atmosphere using FTIR spectroscopy // J. Appl. Spectrosc. 2018. V. 85, iss. 3. P. 462–469. DOI: 10.1007/s10812-018-0673-x.
  16. Bernath P.F. The Atmospheric Chemistry Experiment (ACE) // J. Quant. Spectrosc. Radiat. Transfer. 2016. V. 186. P. 3–16. DOI: 10.1016/j.jqsrt.2016.04.006.
  17. Bernath P., Boone C., Fernando A., Jone S. Low altitude CO2 from the Atmospheric Chemistry Experiment (ACE) satellite // J. Quant. Spectrosc. Radiat. Transfer. 2019. V. 238. P. 106528.
  18. URL: https://databace.scisat.ca/level2. (last access: 9.10.2021).
  19. Boone C.D., Bernath P.F., Cok D., Jones S.C., Steffen J. Version 4 retrievals for the Atmospheric Chemistry Experiment Fourier Transform Spectrometer (ACE-FTS) and Imagers // J. Quant. Spectrosc. Radiat. Transfer. 2020. V. 247. P. 106939. DOI: 10.1016/j.jqsrt.2020. 106939.
  20. Diallo M., Legras B., Ray E., Engel A., Añel J.A. Global distribution of CO2 in the upper troposphere and stratosphere // Atmos. Chem. Phys. 2017. V. 17. P. 3861–3878. DOI:10.5194/acp-17-3861-2017.