Vol. 34, issue 12, article # 8

Kuskov V. V., Banakh V. A. Focusing a partially coherent beam based on the atmospheric backscatter signal. // Optika Atmosfery i Okeana. 2021. V. 34. No. 12. P. 976–981. DOI: 10.15372/AOO20211208 [in Russian].
Copy the reference to clipboard

Abstract:

The results are presented of atmospheric experiments on compensation for the artificially introduced initial aberrations of the wavefront of a focused laser beam using the aperture sounding method based on an atmospheric backscatter signal from an additional source at a different wavelength. It is shown that adaptive compensation can reduce the amount of wavefront distortions, increase the backscatter signal, and restore the focusing of the main laser beam.

Keywords:

laser beam, wavefront, compensation, atmospheric backscatter

References:

1. Kon A.I., Tatarskij V.I. K teorii rasprostraneniya chastichno-kogerentnyh svetovyh puchkov v turbulentnoj atmosfere // Izv. vuzov. Radiofiz. 1972. V. 15, N 10. P. 1547–1574.
2. Andrews L.C., Phillips R.L., Hopen C.Y. Laser Beam Scintillation with Applications. Bellingham, Washington: SPIE Press, 2001. 379 p.
3. Majumdar A.K. Free-space laser communication performance in the atmospheric channel // J. Opt. Fiber. Commun. Rep. 2005. V. 2, N 4. P. 345–396.
4. Zhao L., Xu Y., Yang S. Statistical properties of partially coherent vector beams propagating through anisotropic atmospheric turbulence // Optik. 2021. V. 227. P. 166115.
5. Banah V.A., Buldakov V.M., Mironov V.L. Fluktuatsii intensivnosti chastichno kogerentnogo svetovogo puchka v turbulentnoj atmosfere // Opt. i spektroskop. 1983. V. 54, N 6. P. 1054–1059.
6. Banah V.A., Buldakov V.M. Vliyanie nachal'noj stepeni prostranstvennoj kogerentnosti svetovogo puchka na fluktuatsii intensivnosti v turbulentnoj atmosfere // Opt. i spektroskop. 1983. V. 55, N 4. P. 707–712.
7. Zavorotnyj V.U. Chastotnaya korrelyatsiya sil'nyh fluktuatsij intensivnosti v turbulentnoj atmosfere // Izv. vuzov. Radiofiz. 1984. V. 24, N 5. P. 601–608.
8. Zuev V.E., Banah V.A., Pokasov V.V. Optika turbulentnoj atmosfery. L.: Gidrometeoizdat, 1988. 267 p.
9. Vorontsov M.A., Dudorov V.V., Zyryanova M.O., Kolosov V.V., Filimonov G.A. Chastota poyavleniya oshibochnyh bitov v sistemah besprovodnoj opticheskoj svyazi s chastichno kogerentnym peredayushchim puchkom // Optika atmosf. i okeana. 2012. V. 25, N 11. P. 936–940; Vorontsov M.A., Dudorov V.V., Zyryanova M.O., Kolosov V.V., Filimonov G.A. Bit error rate in free-space optical communication systems with a partially coherent transmitting beam // Atmos. Ocean. Opt. 2013. V. 26, N 3. P. 185–189.
10. Banah V.A., Gordeev E.V., Kuskov V.V., Rostov A.P., Shesternin A.N. Upravlenie nachal'nym volnovym frontom prostranstvenno chastichno kogerentnogo puchka metodom aperturnogo zondirovaniya po signalu obratnogo atmosfernogo rasseyaniya. II. Eksperiment // Optika atmosf. i okeana. 2021. V. 34, N 8. P. 606–616; Banakh V.A., Gordeev E.V., Kuskov V.V., Rostov A.P., Shesternin A.N.
Controlling the initial wavefront of a spatially partially coherent beam by the aperture sensing technique based on backscatter signals in the atmosphere. II. Experiment // Atmos. Ocean. Opt. 2021. V. 34, N 6 (в печати).
11. Banah V.A., Gordeev E.V., Kuskov V.V., Rostov A.P., Shesternin A.N. Upravlenie nachal'nym volnovym frontom prostranstvenno chastichno kogerentnogo puchka metodom aperturnogo zondirovaniya po signalu obratnogo atmosfernogo rasseyaniya. I. Eksperimental'naya ustanovka // Optika atmosf. i okeana. 2021. V. 34, N 8. P. 599–605; Banakh V.A., Gordeev E.V., Kuskov V.V., Rostov A.P., Shesternin A.N. Controlling the initial wavefront of a spatially partially coherent beam by the aperture sensing technique based on backscatter signals in the atmosphere. I. Experimental setup // Atmos. Ocean. Opt. 2021. V. 34, N 6 (в печати).
12. Vorontsov M.A., Sivokon V.P. Stochastic parallel-gradient-descent technique for high-resolution wave-front phase-distortion correction // J. Opt. Soc. Am. A. 1998. V. 15. P. 2745–2758.