Vol. 34, issue 11, article # 12

Tentyukov M. P., Lutoev V. P., Belan B. D., Simonenkov D. V., Golovataya O. S. Ultraviolet radiation detector based on artificial periclase nanocrystals (MgO). // Optika Atmosfery i Okeana. 2021. V. 34. No. 11. P. 916–923. DOI: 10.15372/AOO20211112 [in Russian].
Copy the reference to clipboard

Abstract:

A method of ultraviolet radiation dosimetry based on recording the photostimulated transition Mn3+ + e- ® Мn2+ in ultrafine MgO with a periclase crystal structure is described. The observed effect is associated with the photosensitivity of transition metal impurity ions. The intensity of the electron paramagnetic resonance (EPR) signal of Mn2+ ions can be used as a measure of change in the valence state of Mn impurity ions in MgO lattice. The possibility of recording a photostimulated transition by the EPR is proposed to be used in the development of a passive integrating ultraviolet detector (UV detector). The applicability of the new UV detector for assessing the ultraviolet transparency of snow cover is shown. The possibility of its use for monitoring the ultraviolet radiation on the Earth's surface in the framework of studies of the stability of tundra ecosystems in the conditions of depletion of the stratospheric ozone layer in the Arctic is discussed.

Keywords:

ultraviolet radiation, electron paramagnetic resonance method, magnesium oxide, ultraviolet radiation detector, monitoring, Arctic, snow cover

References:

  1. Juzeniene A., Moan J. Beneficial effects of UV radiation other than via vitamin D production // Dermato-Endocrinology. 2012. N 4. P. 109–117. DOI: 10.4161/derm.20013.
  2. Caldwell M.M., Björn L.O., Bornman J.F., Flint S.D., Kulandaivelu G., Teramura A.H., Tevini M. Effects of increased solar ultraviolet radiation on terrestrial ecosystems // J. Photochem. Photobiol. B. 1998. V. 16, N 1–3. P. 40–52. DOI: 10.1016/S1011-1344(98)00184-5.
  3. Häder D.P., Kumar H.D., Smith R.C., Worrest R.C. Effects of solar UV radiation on aquatic ecosystems and interactions with climate change // Photochem. Photobiol. Sci. 2007. N 6. P. 267–285. DOI: 10.1039/b700020k.
  4. Chubarova N.E., Zhdanova E.Yu., Hattatov V.U., Vargin P.N. Aktual'nye problemy izucheniya ul'trafioletovoj radiatsii i ozonovogo sloya // Vestn. RAN. 2016. V. 86, N 9. P. 839–846. DOI: 10.7868/S0869587316050030.
  5. Zuev V.V., Zueva N.E., Korotkova E.M., Pavlinskij A.V. Vliyanie istoshcheniya ozonovogo sloya na protsessy degradatsii hvojnyh lesov yuzhnyh regionov Sibiri // Optika atmosf. i okeana. 2017. V. 30, N 1. P. 27–34; Zuev V.V., Zueva N.E., Korotkova E.M., Pavlinsky A.V. Impact of ozone depletion on degradation processes of coniferous forests in southern regions of Siberia // Atmos. Ocean. Opt. 2017. V. 30, N 4. P. 342–348. DOI: 10.15372/AOO20170104.
  6. Lucas R.M., Yazar S., Young A.R., Norval M., de Gruijl F.R., Takizawa Y., Rhodes L.E., Sinclair C.A., Neale R.E. Human health in relation to exposure to solar ultraviolet radiation under changing stratospheric ozone and climate // Photochem. Photobiol. Sci. 2019. N 18. P. 641–680. DOI: 10.1039/c8pp90060d.
  7. Webb A.R. Measuring UV radiation: a discussion of dosimeter properties, uses and limitations // J. Photochem. Photobiol. B. 1995. V. 31, N 1–2. P. 9–13. DOI: 10.1016/1011-1344(95)07162-4.
  8. Horkay I., Wikonkál N., Patkó J., Bazsa G., Beck M., Ferenczi A., Nagy Z., Rácz M., Szalay T. SUNTEST: a chemical UVB radiation dosimeter // J. Photochem. Photobiol. B. 1995. V. 31, N 1–2. P. 79–82. DOI: 10.1016/1011-1344(95)07194-6.
  9. Mills A., Grosshans P., McFarlane M. UV dosimeters based on neotetrazolium chloride // J. Photochem. Photobiol. A. 2009. V. 201, N 2–3. P. 136–141. DOI: 10.1016/j.jphotochem.2008.10.010.
  10. Saad A.F., Sedqy E.M., Ahmed R.M. Effect of UVC radiation on the optical properties of thermally treated CR-39 polymer films: A new approach for the use of CR-39 as an optical dosimeter // Radiat. Phys. Chem. 2021. V. 179. DOI: 10.1016/j.radphyschem.2020. 109253.
  11. Quintern L.E., Horneck G., Eschweiler U., Buecker H. A biofilm used as ultraviolet dosimeter // Photochem. Photobiol. 1992. V. 3. P. 389–395. DOI: 10.1111/j.1751-1097.1992.tb04252.x.
  12. Rettberg P., Sief R., Horneck G. The DLR-Biofilm as Personal UV Dosimeter / C. Baumstark-Khan, S. Kozubek, G. Horneck (eds.) // Fundamentals for the Assessment of Risks from Environmental Radiation. NATO Science Series (Series 2. Environmental Security), 1999. V. 55. P. 367–370. DOI: 10.1007/978-94-011-4585-5_46.
  13. Wang T.C. A simple convenient biological dosimeter for monitoring solar UV-B radiation // Biochem. Biophys. Res. Commun. 1991. V. 177, N 1. P. 48–53. DOI: 10.1016/0006-291x(91)91946-a.
  14. Tyrrell R.M. Biological dosimetry and action spectra // J. Photochem. Photobiol. B. 1995. V. 31, N 1–2. P. 35–41. DOI: 10.1016/1011-1344(95)07166-1.
  15. Bérces A., Fekete A., Gáspár S., Gróf P., Rettberg P., Horneck G., Rontó G. Biological UV dosimeters in the assessment of the biological hazard from environmental radiation // J. Photochem. Photobiol. B. 1999. V. 53, N 1–3. P. 36–43. DOI: 10.1016/S1011-1344(99)00123-2.
  16. Davis A., Deane G.H.W., Diffey B.L. Possible dosimeter for ultraviolet radiation // Nature. 1976. V. 261. P. 169–170. DOI: 10.1038/261169a0.
  17. Parisi A.V., Kimlin M.G., Turnbull D.J., Macaranas J. Potential of phenothiazine as a thin film dosimeter for UVA exposures // Photochem. Photobiol. Sci. 2005. V. 4, N 11. P. 907–910. DOI: 10.1039/b508553e.
  18. Turner J., Parisi A.V., Turnbull D.J. Dosimeter for the measurement of plant damaging solar UV exposures // Agric. For. Meteorol. 2009. V. 149, N 8. P. 1301–1306. DOI: 10.1016/j.agrformet.2009.03.002.
  19. Parisi A.V., Amar A., Igoe D.P. Long-term UV dosimeter based on polyvinyl chloride for plant damage effective UV exposure measurements // Agric. For. Meteorol. 2017. V. 243, N 15. P. 68–73. DOI: 10.1016/j.agrformet.2017.05.012.
  20. Tentyukov M.P., Lyutoev V.P. EPR-spektroskopiya suhih aerozolej // Optika atmosf. i okeana. 2008. V. 21, N 9. P. 789–792.
  21. Al'tshuller S.A., Kozyrev B.M. Elektronnyj paramagnitnyh rezonans soedinenij elementov promezhutochnyh grupp. M.: Nauka, 1972. 672 p.
  22. Aerozoli Sibiri / I.S. Andreeva i dr.; otv. red. K.P. Kutsenogij. Novosibirsk: Izd-vo SO RAN, 2006. 548 p.
  23. Hollingbery L.A., Hull Т.Z.R. The thermal decomposition of huntite and hydromagnesite – a review // Thermochim. Acta. 2010. V. 509. P. 1–11.
  24. Ikeya M. New Application of Electron Spin Resonance. Singapore: World Scientific Publishing, 1993. 500 p.
  25. Chiesa M., Paganini M.C., Giamello E. EPR of charge carries stabilized at the surface of metal oxides // Appl. Magn. Reson. 2010. V. 37. P. 605–618.
  26. Davies J.J., Smith S.R.P. Wertz J.E. Electron paramagnetic resonance of tetravalent Manganese ions at tetragonal and octahedral sites in MgO // Phys. Rev. 1969. V. 178. P. 608–612.
  27. Wu X.-X., Fang W., Feng W.-L., Zheng W.-C. Study of EPR parameters and defect structure for two tetragonal impurity centers in MgOrCr3+ and MgO : Mn4+ crystals // Appl. Magn. Reson. 2009. V. 35. P. 503–510.
  28. Valia A.-E., Roomy J.J. A novel ESR method based on dilute solid solution of Mn3+/Mn2+ ions in MgO for detecting spillover of hydrogen from noble metals // J. Mol. Catal. A: Chemical. 2000. V. 159. P. 429–432.
  29. Galustashvili M., Kalabegishvili Т., Kurasbediani A., Kvachadze V., Sobolevskaya S. EPR Investigation of the accumulation of F+ centers in irradiated MgO : Mn crystals // Appl. Magn. Reson. 2005. V. 28. P. 393–399.
  30. Belan B.D. Ozon v troposfere. Tomsk: Izd-vo IOA SO RAN, 2010. 488 p.
  31. Neale R.E., Barnes P.W., Robson T.M., Neale P.J., Williamson C.E., Zepp R.G., Wilson S.R., Madronich S., Andrady A.L., Heikkilä A.M., Bernhard G.N., Bais A.F., Aucamp P.J., Banaszak A.T., Bornman J.F., Bruckman L.S., Byrne S.N., Foereid B., Häder D.-P., Hollestein L.M., Hou W.-C., Hylander S., Jansen M.A.K., Klekociuk A.R., Liley J.B., Longstreth J., Lucas R.M., Martinez-Abaigar J., McNeikk K., Olsen C.M., Pandey K.K., Rhodes L.E., Robinson S.A., Rose K.C., Schikowski T., Solomon K.R., Sulzberger B., Ukebor J.E., Wang Q.-W., Wängberg S.-Å., White C.C., Yazar S., Young P.J., Zhu L., Zhu M. Environmental effects of stratospheric ozone depletion, UV radiation, and interactions with climate change: UNEP Environmental Effects Assessment Panel, Update 2020 // Photochem. Photobiol. Sci. 2021. V. 20. P. 1–67. DOI: 10.1007/s43630-020-00001-x.
  32. Zuev V.V., Savel'eva E.S., Pavlinskij A.V. Bespretsedentnaya ozonovaya anomaliya v arkticheskoj stratosfere v zimne-vesennij period 2020 year // Dokl. RAN. Nauki o Zemle. 2020. V. 495, N 2. P. 36–40.
  33. Lawrence Z.D., Perlwitz J., Butler A.H., Manney G.L., Newman P.A., Lee S.H., Nash E.R. The remarkably strong Arctic stratospheric polar vortex of winter 2020: Links to record-breaking Arctic oscillation and ozone loss // J. Geophys. Res.: Atmos. 2020. V. 125, N 22. DOI: 10.1029/2020JD033271.
  34. Bernhard G., Manney G.L., Lakkala K.A., Johnsen B., Grooß J.-U., Ialongo I., Johnsen B., Lakkala K., Manney G.L., Müller R., Svendby T. Record-breaking increases in Arctic solar ultraviolet radiation caused by exceptionally large ozone depletion in 2020 // Geophys. Res. Lett. 2020. V. 47, N 24. P. e2020GL090844. DOI: 10.1029/2020GL090844.