Vol. 34, issue 09, article # 8

Kanev F. Yu., Aksenov V. P., Makenova N. A., Veretekhin I. D. Assessment of the possibility to transfer information by vortex radiation in the presence of noise formed by randomly located dislocations. // Optika Atmosfery i Okeana. 2021. V. 34. No. 09. P. 716–725. DOI: 10.15372/AOO20210908 [in Russian].
Copy the reference to clipboard

Abstract:

A technique is developed for extracting an information currying signal from a beam with optical vortices in the wavefront due to distortions. Specific feature of this communication system is that information is also transferred by an optical vortex. The analysis has been carried out with the use of numerical simulation techniques. In the model developed, all singular points were introduced into the wavefront in the plane of the source emitting aperture, after which the radiation propagates under diffraction-free conditions. This schematic of numerical experiment roughly corresponds to an optical communication line, where a beam passes through a thin medium layer near the laser source, and beam distortions are so strong in this layer that additional vortices appear in the wavefront. Two techniques for extracting an information carrying signal from the distorted beam are considered. A possibility of solving the problem stated with the use of the technique developed is shown.

Keywords:

optical vortices, singular points of the wavefront, optical communication lines, atmospheric turbulence

References:

  1. Aksenov V.P., Dudorov V.V., Kolosov V.V., Pogutsa Ch.E., Abramova E.S. Registratsiya orbital'nogo uglovogo momenta lazernogo puchka cherez ego razlozhenie po opticheskim vihryam i ego ispol'zovanie v sisteme svyazi v turbulentnoj atmosfere // Optika atmosf. i okeana. 2020. V. 33, N 5. P. 347–357. DOI: 10.15372/AOO20200504.
  2. Aksenov V.P., Kanev F.Yu., Izmailov I.V., Poizner B.N. Optical vortex detector as a basis for a data transfer system: Operational principle, model, and simulation of the influence of turbulence and noise // Opt. Commun. 2012. V. 286, N 6. P. 905–928.
  3. Willner A.E., Huang H., Yan Y., Ren Y., Ahmed N., Xie G., Bao C., Li L., Cao Y., Zhao Z., Wang J., Lavery M.P.J., Tur M., Ramachandran S., Molisch A.F., Ashrafi N., Ashrafi S. Optical communications using orbital angular momentum beams // Adv. Opt. Photon. 2015. V. 7. P. 66–106. DOI: 10.1364/AOP.7.00006666 1943-8206/15/010066-41$15/0$15.00.
  4. Chan Vincent W.S. Free-space optical communications // J. Lightwave Technol. 2006. V. 24, N 12. P. 4750–4761.
  5. Robinson B.S., Boroson D.M., Burianek D.A., Murphy D.V. Overview of the lunar laser communications demonstration // Proc. SPIE. 2011. V. 7923. P. 792302-1–792302-4. DOI: 10.1117/12.878313.
  6. Gibson G., Courtial J., Padgett M.J., Vasnetsov M., Pas’ko V., Barnett S.M., Franke-Arnold S. Free-space information transfer using light beams carrying orbital angular momentum // Opt. Express. 2004. V. 12, N 22. P. 5448–5455.
  7. Shapiro J.H., Puryear A.L. Reciprocity-enhanced optical communication through atmospheric turbulence – Part I: Reciprocity proofs and far-field power transfer optimization // J. Opt. Commun. Network. 2012. V. 4, N 12. P. 947–954.
  8. Shapiro J.H., Puryear A.L., Parenti R.R. Reciprocity-enhanced optical communication through atmospheric turbulence – Part II: Communication architectures and performance // J. Opt. Commun. Network. 2013. V. 5, N 8. P. 888–900.
  9. Bozinovic N., Yang Yue, Yongxiong Ren, Tur M., Kristensen P., Hao Huang, Willner A.E., Ramachandran S. Tarabit-scale orbital angular momentum mode division multiplexing in fibers // Science. 2013. V. 340. P. 1545–1548.
  10. Aksenov V.P., Dudorov V.V., Kolosov V.V., Pogutsa Ch.E., Levitskij M.E. Analiz korrelyatsii intensivnosti v priemo-peredayushchih lazernyh sistemah dlya formirovaniya kriptograficheskogo klyucha // Optika atmosf. i okeana. 2020. V. 33, N 8. P. 591–597; Aksenov V.P., Dudorov V.V., Kolosov V.V., Pogutsa Ch.E., Levitskii M.E. The analysis of intensity correlation in laser transceiving systems for formation of a cryptographic key // Atmos. Ocean. Opt. 2020. V. 33, N 6. P. 571–577.
  11. Jingzhi Wu, Hui Li, Yangjun Li. Encoding information as orbital angular momentum states of light for wireless optical communications // Opt. Eng. 2007. V. 46, N 1. P. 019701–1–019701–5.
  12. Chunyi Chen, Huamin Yang, Shoufeng Tong, Yan Lou. Changes in orbital-angular-momentum modes of a propagated vortex Gaussian beam through weak-to-strong atmospheric turbulence // Opt. Express. 2016. V. 24, N 7. P. 6959–6975.
  13. Kanev F.Yu., Aksenov V.P., Veretekhin I.D. Analiz tochnosti algoritmov registratsiya opticheskih vihrej // Optika atmosf. i okeana. 2021. V. 34, N 1. P. 5–16.
  14. Indebetouw G. Optical vortices and their propagation // J. Mod. Opt. 1993. V. 40, N 1. P. 73–87.
  15. Lukin V.P., Fortes B.V. Adaptivnoe formirovanie puchkov i izobrazhenij v atmosfere. Novosibirsk: Izd-vo SO RAN, 1999. 212 p.
  16. Kandidov V.P., Chesnokov S.S., Shlenov S.A. Diskretnoe preobrazovanie Fur'e. M.: Izd-vo fizicheskogo fakul'teta MGU, 2019. 88 p.
  17. Chen M., Roux F.S., Olivier J.C. Detection of phase singularities with a Shack–Hartmann wavefront sensor // J. Opt. Soc. Am. A. 2007. V. 24, N 7. P. 1994–2002.
  18. Kanev F.Yu., Aksenov V.P., Veretekhin I.D. Registratsiya opticheskih vihrej datchikom Sheka–Gartmana // Vestn. RFFI. 2018. N 4. P. 8–10.
  19. Kanev F.Yu., Lukin V.P. Adaptivnaya optika. Chislennye i eksperimental'nye issledovaniya. Tomsk: Izd-vo IOA SO RAN, 2005. 250 p.