Vol. 34, issue 07, article # 7

Raputa V. F., Lezhenin A. A. Estimation of the dynamic and thermal characteristics of the rise of a smoke plume from satellite information. // Optika Atmosfery i Okeana. 2021. V. 34. No. 07. P. 530–534. DOI: 10.15372/AOO20210707 [in Russian].
Copy the reference to clipboard

Abstract:

A numerical model has been developed for retrieving characteristics of the active phase of the rise of a smoke plume based on observation data. The basic conditions in the estimation model are the solution of the equations of hydrothermodynamics of the atmosphere. Using satellite information, the temperature variation and the rate of rise of the smoke plume from the high-rise pipe of the Gusinoozyorskaya GRES were numerically retrieved. The efficiency of the approach proposed in winter time, which is characterized by large volumes of emissions of smoke mixtures and high contrast of the shadows of the plumes on the earth's surface, is shown.

Keywords:

satellite images, smoke plume, buoyancy flux, atmosphere, equations of hydrothermodynamics, height of impurity rise

References:

  1. Kondrat'ev K.Ya., Grigor'ev Al.A., Pokrovskij O.M., Shalina E.V. Kosmicheskoe distantsionnoe zondirovanie atmosfernogo aerozolya. L.: Gidrometeoizdat, 1983. 216 p.
  2. Balter B.M., Balter D.B., Egorov V.V., Stal'naya M.V. Ispol'zovanie dannyh ISZ Landsat dlya opredeleniya kontsentratsii zagryaznitelej v shlejfah ot produvki gazovyh skvazhin na osnovanii modeli istochnika // Issledovanie Zemli iz kosmosa. 2014. N 2. P. 55–66.
  3. Solomos S., Amiridis V., Zanis P., Gerasopoulos E., Sofiou F.I., Herekakis T., Brioude J., Stohl A., Kahn R.A., Kontoes C. Smoke dispersion modeling over complex terrain using high resolution meteorological data and satellite observations – The FireHub platform // Atmos. Environ. 2015. V. 119. P. 348–361.
  4. Obolkin V.A., Potemkin V.L., Makukhin V.L., Chipanina Y.V., Marinayte I.I. Low-level atmospheric jets as main mechanism of long-range transport of power plant plumes in the Lake Baikal Region // Int. J. Environ. Studies. 2014. V. 71, N 3. P. 391–397.
  5. Tohidi A., Kaye N.B. Highly buoyant bent-over plumes in a boundary layer // Atmos. Environ. 2016. V. 131. P. 97–114.
  6. Byzova N.L., Garger E.K., Ivanov V.N. Eksperimental'nye issledovaniya atmosfernoj diffuzii i raschety rasseyaniya primesi. L.: Gidrometeoizdat, 1991. 278 p.
  7. Zilitinkevich S.S. Atmosfernaya turbulentnost' i planetarnye pogranichnye sloi. M.: Fizmatlit, 2013. 252 p.
  8. Atmosfernaya turbulentnost' i modelirovanie rasprostraneniya primesej / F.T.M. N'istad, H. van Dop (red.). L.: Gidrometeoizdat, 1985. 351 p.
  9. Raputa V.F., Lezhenin A.A., Yaroslavtseva T.V. Otsenka parametrov vybrosov Novosibirskih TETS s ispol'zovaniem sputnikovoj informatsii // Interekspo Geo-Sibir'. 2018. V. 1, N 4. P. 137–146.
  10. Loboda E.L., Kasymov  D.P., Agafontsev M.V., Rejno V.V., Gordeev E.V., Tarkanova V.A., Martynov P.S., Orlov K.E., Savin K.V., Dutov A.I., Loboda Yu.A. Vliyanie malyh prirodnyh pozharov na harakteristiki atmosfery vblizi ochaga goreniya // Optika atmosf. i okeana. 2020. V. 33, N 10. P. 818–823. DOI: 10.15372/AOO20201011.
  11. Priestley C.H.B., Ball F.K. Continuous convection from an isolated source of heat // Quart. J. Roy. Met. Soc. 1956. V. 81. P. 144–157.
  12. Tihonov N.A., Zaharova S.A., Davydova M.A. Modelirovanie dinamiki obrazovaniya shlejfa NO2 ot tochechnogo istochnika // Optika atmosf. i okeana. 2020. V. 33, N 9. P. 722–727; Tikhonov N.A., Zakharova S.A., Davydova M.A. Simulation of the dynamics of an NO2 plume from a point source // Atmos. Ocean. Opt. 2021. V. 34, N 1. P. 45–49. DOI: 10.15372/AOO20200909.
  13. Borisenko I.M., Pronin N.M., Shajbonov B.B. Ekologiya ozera Gusinoe. Ulan-Ude: Izd-vo BNTS SO RAN, 1994. 199 p.
  14. Tsydypov B.Z., Andreev S.G., Ayurzhanaev A.A., Sodnomov B.V., Gurzhapov B.O., Batotsyrenov E.A., Pavlov I.A., Shiretorova V.G., Ul'zetueva I.D., Gabeeva D.A., Radnaeva L.D., Garmaev E.ZH. Vliyanie sbrosov Gusinoozerskoj GRES na termicheskij i gidrohimicheskij rezhim ozera Gusinoe // Izvestiya Irkutskogo gosudarstvennogo universiteta. Seriya «Nauki o Zemle». 2017. V. 22. P. 135–150.
  15. Fadova A.A., Kucherik G.V., Zablotskaya E.V. Otsenka kachestva atmosfernogo vozduha rajona razmeshcheniya osnovnoj ploshchadki aktsionernogo obshchestva «Inter RAO – Elektrogeneratsiya» // Energeticheskie ustanovki i tekhnologii. 2020. V. 6, N 2. P. 138–145.
  16. Raputa V.F., Lezhenin A.A. Otsenka vysoty pod"ema dymovogo shlejfa po sputnikovym snimkam // Optika atmosf. i okeana. 2020. V. 33, N 6. P. 471–475; Raputa V.F., Lezhenin A.A. Estimation of the altitude of smoke plumes from satellite images // Atmos. Ocean. Opt. 2020. V. 33, N 5. P. 539–544. DOI: 10.15372/AOO20200609.
  17. Berlyand M.E. Sovremennye problemy atmosfernoj diffuzii i zagryazneniya atmosfery. L.: Gidrometeoizdat, 1975. 448 p.
  18. Gribkov A.M., Zrojchikov N.A., Prohorov V.B. Formirovanie traektorii dymovogo fakela pri nalichii samookutyvaniya ogolovka dymovoj truby // Teploenergetika. 2017. N 10. P. 51–59.
  19. Meteorologiya i atomnaya energiya / pod red. D. Slejda. L.: Gidrometeoizdat, 1971. 647 p.
  20. Metody raschetov rasseivaniya vybrosov vrednyh (zagryaznyayushchih) veshchestv v atmosfernom vozduhe. Utverzhdeny prikazom Minprirody Russia ot 06.06.2017 N 273.