Vol. 34, issue 06, article # 4

Shchelkanov A. A., Kovalenko M. A., Kupryazhkin A. Ya., Markelov Yu. I., Poddubnyi V. A., Gadelshin V. M. First results of the study of particulate matter samples of the Middle Ural using the secondary ion mass spectrometry. // Optika Atmosfery i Okeana. 2021. V. 34. No. 06. P. . DOI: 10.15372/AOO20210604 [in Russian].
Copy the reference to clipboard


The first results of studying atmospheric aerosol samples from the Middle Urals using a time-of-flight secondary ion mass spectrometer are considered. The aerosol sampling by the aspiration method on KFBZh and AFA filters is discussed. The difficulties in carrying out mass spectrometry "directly", that is, without preliminary sample preparation, are analyzed. On the basis of the results of mass spectrometry and optical microscopy of the filter surface, further prospects of their use for sampling aerosol microparticles are considered.


atmospheric aerosol, secondary ion mass spectrometry (SIMS), aerosol filters


  1. Air pollution [Electronic resource]. URL: https:// www.who.int/westernpacific/health-topics/air-pollution (last access: 29.12.2020).
  2. Air Quality Guidelines: Global Update 2005: Particulate Matter, Ozone, Nitrogen Dioxide, and Sulfur Dioxide / World Health Organization (eds.). Copenhagen, Denmark: World Health Organization, 2006. 484 р.
  3. Hime N., Marks G., Cowie C. A comparison of the health effects of ambient particulate matter air pollution from five emission sources // Int. J. Environ. Res. Public Health. 2018. V. 15, N 6. P. 1206.
  4. Jung S.J., Mehta J.S., Tong L. Effects of environment pollution on the ocular surface // Ocul. Surf. 2018. V. 16, N 2. P. 198–205.
  5. Ali M.U., Liu G., Yousaf B., Ullah H., Abbas Q., Munir M.A.M. A systematic review on global pollution status of particulate matter-associated potential toxic elements and health perspectives in urban environment // Environ. Geochem. Health. 2019. V. 41, N 3. P. 1131–1162.
  6. Grantz D.A., Garner J.H.B., Johnson D.W. Ecological effects of particulate matter // Environ. Int. 2003. V. 29, N 2–3. P. 213–239.
  7. Obzor sostoyaniya i zagryazneniya okruzhayushchej sredy v Rossijskoj Federatsii Informatsionno-analiticheskie materialy Produktsiya Rosgidromet [Elektronnyj resurs]. URL: http://www.meteorf.ru/product/ infomaterials/90/ (data obrashcheniya: 29.12.2020).
  8. Gosudarstvennyj doklad «O sostoyanii i ob ohrane okruzhayushchej sredy Rossijskoj Federatsii v 2018 year». M.: Minprirody Rossii; NPP «Kadastr», 2019. 844 p.
  9. ToF-SIMS: Surface Analysis by Mass Spectrometry / J.C. Vickerman, D. Briggs (eds.). Manchester: IM Publications LLP, Surface Spectra Limited, 2013. 732 p.
  10. Gladkih V.A., Makienko A.E. Tsifrovaya ul'trazvukovaya meteostantsiya // Pribory. 2009. N 7. P. 21–25.
  11. Nakayama T., Matsumi Y., Kawahito K., Watabe Y. Development and evaluation of a palm-sized optical PM2.5 sensor // Aerosol Sci. Technol. 2018. V. 52, N 1. P. 2–12.
  12. Sakerin S.M., Kabanov D.M., Rostov A.P., Turchinovich S.A., Knyazev V.V. Solnechnye fotometry dlya izmereniya spektral'noj prozrachnosti atmosfery v statsionarnyh i mobil'nyh usloviyah // Optika atmosf. i okeana. 2012. V. 25, N 12. P. 1112–1117; Sakerin S.M., Kabanov D.M., Rostov A.P., Turchinovich S.A., Knyazev V.V. Sun photometers for measuring spectral air transparency in stationary and mobile conditions // Atmos. Ocean. Opt. 2013. V. 26, N 4. P. 352–356.
  13. TOP Page l ULVAC-PHI, Inc. [Electronic resource]. URL: https://www.ulvac-phi.com/en/ (last access: 18.01.2021).
  14. Ivanov V.P., Truhan S.N., Kochubej D.I., Kutsenogij K.P., Makarov V.I. Analiz prirody adsorbirovannyh sloev atmosfernyh aerozolej // Himiya v interesah ustojchivogo razvitiya. 2006. N 14. P. 449–452.
  15. Silver Membranes – Membrane Disc Filters [Electronic resource]. URL: https://www.sterlitech.com/silver-membranes.html (last access: 29.12.2020).