Vol. 34, issue 06, article # 11

Gladkikh V. A., Mamyshev V. P., Nevzorova I. V., Odintsov S. L. Dependence of friction velocity on the wind velocity in the surface air layer. // Optika Atmosfery i Okeana. 2021. V. 34. No. 06. P. . DOI: 10.15372/AOO20210611 [in Russian].
Copy the reference to clipboard

Abstract:

The friction velocity (dynamic velocity) u* enters into nearly all computational schemes used for forecasting the state of the atmosphere. To find this velocity, it is necessary to know the mixed moments of turbulent components of the wind vector. However, the information about turbulence is lacking at the initial stage of forecast. That is why model equations are usually used for u*. These equations are based on the relation of the friction velocity to the horizontal wind velocity Vh. In this work, we considers the empirical relations u*(Vh) for various conditions (different time of the day, seasons, types of stratification, observation sites, and measurement altitudes). Initial experimental data used to derive these relations were obtained by ultrasonic meteorological stations operating in the surface air layer at different observation sites.

Keywords:

surface layer, wind velocity, friction velocity, turbulence

Figures:

References:

1. Dai Y., Basu S., Maronga B., de Roode S.R. Addressing the grid-size sensitivity issue in large-eddy simulations of stable boundary layers // Bound.-Lay. Meteorol. 2021. V. 178, iss. 1. P. 63–89.
2. Barbano F., Brattich E., Di Sabatino S. Characteristic scales for turbulent exchange process in a real urban canopy // Bound.-Lay. Meteorol. 2021. V. 178, iss. 1. P. 119–142.
3. Tian G., Conan B., Calmet I. Turbulence-kinetic-energy budget in urban-like boundary layer using large-eddy simulation // Bound.-Lay. Meteorol. 2021. V. 178, iss. 2. P. 201–223.
4. Kurbatskaya L.I., Kurbatskij A.F. O vychislenii turbulentnoj skorosti treniya v chislennoj modeli gorodskogo ostrova tepla v ustojchivo stratifitsirovannoj atmosfere // Optika atmosf. i okeana. 2016. V. 29, N 6. P. 512–515. DOI: 10.15372/AOO20160611; Kurbatskaya L.I., Kurbatskii A.F. Calculation of the turbulent friction velocity in a mathematical model of an urban heat island in a stably stratified environment // Atmos. Ocean. Opt. 2016. V. 29, N 5. P. 561–564.
5. Kurbatskij A.F. Vvedenie v modelirovanie turbulentnogo perenosa impul'sa i skalyara. Novosibirsk: GEO, 2007. 331 p.
6. Panasenko E.A., Starchenko A.V. Opredelenie gorodskih rajonov-zagryaznitelej atmosfernogo vozduha po dannym nablyudenij // Optika atmosf. i okeana. 2009. V. 22, N 3. P. 279–283; Panasenko E.A., Starchenko A.V. Determination of urban district atmospheric air pollution in accordance with observational data // Atmos. Ocean. Opt. 2009. V. 22, N 2. P. 186–191.
7. Gladkih V.A., Makienko A.E. Tsifrovaya ul'trazvukovaya meteostantsiya // Pribory. 2009. N 7. P. 21–25.
8. Castellví F., Suvočarev K., Reba M.L., Runkle B.R.K. Friction-velocity estimates using the trace of a scalar and the mean wind speed // Bound.-Lay. Meteorol. 2020. V. 176, iss. 1. P. 105–123.
9. Mukherjee S., Lohani P., Kumar K., Chowdhuri S., Prabhakaran T., Karipot A.K. Assessment of new alternative scaling properties of the convective boundary layer: Application to velocity and temperature spectra // Bound.-Lay. Meteorol. 2020. V. 176, iss. 2. P. 271–289.
10. Maronga B., Knigge C., Raasch S. An improved surface boundary condition for large-eddy simulations based on Monin–Obukhov similarity theory: Evaluation and consequences for grid convergence in neutral and stable conditions // Bound.-Lay. Meteorol. 2020. V. 174, iss. 2. P. 297–325.
11. Martins L.G.N., Degrazia G.A., Acevedo O.C., Puhales F.S., De Oliveira P.E.S., Teichrieb C.A., Da Silva S.M. Quasi-experimental determination of turbulent dispersion parameters for different stability conditions from a tall micrometeorological tower // J. Appl. Meteorol. Climatol. 2018. V. 57, iss. 8. P. 1729–1745.
12. Berg L.K., Newsom K.R., Turner D.D. Year-long vertical velocity statistics derived from Doppler lidar data for the continental convective boundary layer // J. Appl. Meteorol. Climatol. 2017. V. 56, iss. 9. P. 2441–2454.
13. Sun J., Lenschow D.H., LeMone M.A., Mahrt L. The role of large-coherent-eddy transport in the atmospheric surface layer based on CASES-99 observations // Bound.-Lay. Meteorol. 2016. V. 160, N 1. P. 83–111.
14. Sun J., Takle E.S., Acevedo O.C. Understanding physical processes represented by the Monin–Obukhov bulk formula for momentum transfer // Bound.-Lay. Meteorol. 2020. V. 177, N 1. P. 69–95.
15. Monin A.S., Yaglom A.M. Statisticheskaya gidromekhanika. V. 1. Teoriya turbulentnosti. SPb.: Gidrometeoizdat, 1992. 695 p.
16. Atmosfernaya turbulentnost' i modelirovanie rasprostraneniya primesej / pod red. F.T.M. N'istadta, H. Van Dopa. L.: Gidrometeoizdat, 1985. 353 p.
17. Hrgian A.H. Fizika atmosfery. V. 2. L.: Gidrometeoizdat, 1978. 320 p.
18. Gladkikh V.A., Nevzorova I.V., Odintsov S.L. Statistika vneshnih masshtabov turbulentnosti v prizemnom sloe atmosfery // Optika atmosf. i okeana. 2019. V. 32, N 3. P. 212–220. DOI: 10.15372/AOO20190307; Gladkikh V.A., Nevzorova I.V., Odintsov S.L. Statistics of outer turbulence scales in the surface air layer // Atmos. Ocean. Opt. 2019. V. 32, N 4. P. 450–458.
19Matveev L.T. Fizika atmosfery. SPb.: Gidrometeoizdat, 2000. 779 p.
20. Kolemaev V.A., Staroverov O.V., Turundaevskij V.B. Teoriya veroyatnostej i matematicheskaya statistika. M.: Vysshaya shkola, 1991. 400 p.
21. Mamysheva A.A., Odintsov S.L. Analiz zavisimosti normirovannoj kineticheskoj energii turbulentnosti ot napravleniya vetra i tipa stratifikatsii v prizemnom sloe atmosfery nad urbanizirovannoj territoriej // Optika atmosf. i okeana. 2012. V. 25, N 4. P. 374–381; Mamysheva A.A., Odintsov S.L. Analysis of the dependence of the normalized turbulent kinetic energy on the wind direction and type of stratification in the near-ground atmospheric layer over urbanized territory // Atmos. Ocean. Opt. 2012. V. 25, N 5. P. 377–386.