Vol. 34, issue 04, article # 4

Bryukhanov I. D., Zuev S. V., Samokhvalov I. V. Effect of specular high-level clouds on scattered solar radiation fluxes at the zenith. // Optika Atmosfery i Okeana. 2021. V. 34. No. 04. P. 272–279. DOI: 10.15372/AOO20210404 [in Russian].
Copy the reference to clipboard

Abstract:

The technique and results of a complex experiment on studying the effect of high-level clouds (HLCs) on the scattered solar radiation flux are described. The optical characteristics (scattering ratio, optical depth, and backscattering phase matrix) and geometric characteristics (the lower and upper boundary altitudes and vertical thickness) of clouds were estimated based on the lidar data, and the scattered solar radiation flux in the zenith direction was measured with a pyranometer. It is shown that specular HLCs, i.e., consisting of preferably horizontally oriented ice crystals, significantly reduce the fluxes of scattered solar radiation incident on the Earth’s surface in comparison with HLCs with approximately the same optical depth, but with chaotically orientated particles.

Keywords:

high-level clouds, anomalous backscattering, oriented ice crystals, polarization lidar, backscattering phase matrix, zenith pyranometer, diffuse solar radiation

References:

  1. International Cloud Atlas. Vol. 1: Manual on the Observation of Clouds and Other Meteors. WMO, 1975. 155 p.
  2. Radiatsionnye svojstva peristyh oblakov / pod red. E.M. Fejgel'son. M.: Nauka, 1989. 223 p.
  3. Volkovitskij O.A., Pavlova L.N., Petrushin A.G. Opticheskie svojstva kristallicheskih oblakov. L.: Gidrometeoizdat, 1984. 198 p.
  4. Baran A. A review of the light scattering properties of cirrus // J. Quant. Spectrosc. Radiat. Transfer. 2009. V. 110. P. 1239–1260. DOI: 10.1016/j.jqsrt.2009.02.026.
  5. Um J., McFarquhar G.M., Hong Y.P., Lee S.-S., Jung C.H., Lawson R.P., Mo Q. Dimensions and aspect ratios of natural ice crystals // Atmos. Chem. Phys. 2015. V. 15, N 7. P. 3933–3956. DOI: 10.5194/acp-15-3933-2015.
  6. Liou K.N. Influence of cirrus clouds on weather and climate processes: A global perspective // J. Geophys. Res. 1986. V. 103. P. 1799–1805.
  7. Ritchie G.D., Still K.R., Rossi J., III, Bekkedal M.Y.-V., Bobb A.J., Arfsten D.P. Biological and health effects of exposure to kerosene-based jet fuels and performance additives // J. Toxic. Environ. Health, Part B. 2003. V. 6, N 4. P. 357–451. DOI: 10.1080/10937400390198655.
  8. Dmitrieva-Arrago L.R., Trubina M.A., Tolstyh M.A. Rol' fazovogo sostava oblakov v formirovanii potokov korotkovolnovoj i dlinnovolnovoj radiatsii // Tr. Gidromettsentra Russia. 2017. Iss. 363. P. 19–34.
  9. Heymsfield A.J., Krämer M., Luebke A., Brown P., Cziczo D.J., Franklin C., Lawson P., Lohmann U., McFarquhar G., Ulanowski Z., Van Tricht K. Cirrus clouds // Meteor. Monogr. 2017. V. 58. DOI: 10.1175/amsmonographs-d-16-0010.1.
  10. Wylie D.P., Menzel W.P., Woolf H.M., Strabala K.I. Four years of global cirrus cloud statistics using HIRS // J. Clim. 1994. V. 7, N 12. P. 1972–1986.
  11. Vorob'eva V.V., Volodin E.M. Chislennoe modelirovanie vozdejstviya na klimat putem izmeneniya svojstv oblakov verhnego yarusa v klimaticheskoj modeli IVM RAN // Tr. Gidromettsentra Russia. 2017. Iss. 363. P. 5–18.
  12. Shanks J.G., Lynch D.K. Specular scattering in cirrus clouds // Proc. SPIE. 1995. V. 2578. P. 227–238. DOI: 10.1117/12.228943.
  13. Borovoi A., Kustova N. Specular scattering by preferentially oriented ice crystals // Appl. Opt. 2009. V. 48, N 19. P. 3878–3885.
  14. Balin Yu.S., Kaul B.V., Kokhanenko G.P., Penner I.E. Observations of specular reflective particles and layers in crystal clouds // Opt. Express. 2011. V. 19, N 7. P. 6209–6214. DOI: 10.1364/OE.19.006209.
  15. Noel V., Chepfer H. A global view of horizontally oriented crystals in ice clouds from Cloud – Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) // J. Geophys. Research. 2010. V. 115. P. D00H23. DOI: 10.1029/2009JD012365.
  16. Kaul' B.V., Volkov S.N., Samohvalov I.V. Rezul'taty issledovanij kristallicheskih oblakov posredstvom lidarnyh izmerenij matrits obratnogo rasseyaniya sveta // Optika atmosf. i okeana. 2003. V. 16, N 4. P. 354–361.
  17. Samohvalov I.V., Kaul' B.V., Nasonov S.V., Zhivotenyuk I.V., Bryuhanov I.D. Matritsa obratnogo rasseyaniya sveta zerkal'no otrazhayushchih sloev oblakov verhnego yarusa, obrazovannyh kristallicheskimi chastitsami, preimushchestvenno orientirovannymi v gorizontal'noj ploskosti // Optika atmosf. i okeana. 2012. V. 25, N 5. P. 403–411.
  18. Samohvalov I.V., Bryuhanov I.D., Nasonov S.V., Zhivotenyuk I.V., Stykon A.P. Issledovanie opticheskih harakteristik peristyh oblakov s anomal'nym obratnym rasseyaniem // Izv. vuzov. Fizika. 2012. V. 55, N 8. P. 63–67.
  19. Kirillov N.S., Samokhvalov I.V. Application of an electro-optical shutter for strobing of lidar signals // Proc. SPIE. 2014. V. 9292, N 92922D. DOI: 10.1117/12.2074605.
  20. Volkov S.N., Kaul' B.V., Samohvalov I.V. Metodika obrabotki rezul'tatov lidarnyh izmerenij matrits obratnogo rasseyaniya sveta // Optika atmosf. i okeana. 2002. V. 15, N 11. P. 982–986.
  21. Samokhvalov I.V., Bryukhanov I.D., Ni E.V. Temporal variability of the specularity of high-level clouds according to the data on laser polarization sensing // Proc. SPIE. 2020. V. 11560, N 115604C. DOI: 10.1117/12.2575529.
  22. University of Wyoming [Electronic resource]. URL: http://weather.uwyo.edu (last access: 20.01.2021).
  23. Rukovodstvo gidrometeorologicheskim stantsiyam po aktinometricheskim nablyudeniyam. L.: Gidrometeoizdat, 1973. 222 p.
  24. Abakumova G.M., Gorbarenko E.V. Prozrachnost' atmosfery v Moskve za poslednie 50 let i ee izmeneniya na territorii Rossii. M.: Izd-vo LKI, 2008. 192 p.
  25. Abakumova G.M., Nezval' E.I., Shilovtseva O.A. Vliyanie kuchevoj oblachnosti na rasseyannuyu i summarnuyu ul'trafioletovuyu, fotosinteticheski aktivnuyu i integral'nuyu solnechnuyu radiatsiyu // Meteorol. i gidrol. 2002. N 7. P. 29–40.
  26. Zuev S.V., Krasnenko N.P., Kartashova E.S. Cloud identification using actinometrical data // IOP Conf. Ser. Earth Environm. Sci. 2017. V. 96, N 1. P. 012013. DOI: 10.1088/1755-1315/96/1/012013.
  27. Zuev S.V., Krasnenko N.P., Kartashova E.S. Using actinometric data for identification of cumulus clouds // Proc. SPIE. 2017. V. 10466, N 1046638. DOI: 10.1117/12.2286585.
  28. Zuev S.V. Mnogoelementnyj orientirovannyj izmeritel' harakteristik solnechnogo izlucheniya // Optika atmosf. i okeana. 2019. V. 32, N 6. P. 504–508.
  29. Samokhvalov I.V., Bryukhanov I.D., Zuev S.V., Zhivotenyuk I.V. Effect of specular high-level clouds on solar radiation fluxes according to the data of the lidar-actinometric experiment // Proc. SPIE. 2020. V. 11560, N 115604D. DOI: 10.1117/12.2575530.
  30. Samokhvalov I.V., Bryukhanova V.V., Bryukhanov I.D., Zhivotenyuk I.V., Ni E.V., Zuev S.V., Cheredko N.N. Optical and radiative characteristics of cirrus from the data of three-year lidar and actinometric research at Tomsk State University // Russ. Phys. J. 2020. V. 63, N 4. P. 616–624. DOI: 10.1007/s11182-020-02074-8.
  31. Movable Type Ltd. URL: http://www.movable-type.co.uk (last access: 20.01.2021).