Vol. 34, issue 02, article # 8

Gladkikh V. A., Nevzorova I. V., Odintsov S. L. Heat fluxes in the surface air layer with decomposition of initial components onto different scales. // Optika Atmosfery i Okeana. 2021. V. 34. No. 02. P. 129–142. DOI: 10.15372/AOO20210208 [in Russian].
Copy the reference to clipboard

Abstract:

The paper discusses the results of calculation of heat fluxes (kinematic temperature fluxes) in the surface air layer from experimental data on variations in the air temperature and wind vector components on different scales. The fluxes along three coordinate axes of the “stationary” and “accompanying” Cartesian coordinate systems are compared. Estimates of the heat fluxes for the territory with natural landscape (at two altitudes in the surface layer) and the urban territory are considered. The analysis of experimental data has led us to the conclusion that the heat fluxes on the local scale should be taken into account along with the heat fluxes on the turbulent scale when predicting the state of the atmosphere using models of high spatial resolution.

Keywords:

atmosphere, heat flux, surface layer, gray zone, turbulence

References:

  1. Starchenko A.V., Kuzhevskaya I.V., Kizhner L.I., Barashkova N.K., Volkova M.A., Bart A.A. Otsenka uspeshnosti chislennogo prognoza elementov pogody po mezomasshtabnoj modeli atmosfery vysokogo razresheniya TSUNM3 // Optika atmosf. i okeana. 2019. V. 32, N 1. P. 57–61.
  2. Kalinin N.A., Vetrov A.L., Sviyazov E.M., Popova E.V. Izuchenie intensivnoj konvektsii v Permskom krae s pomoshch'yu modeli WRF // Meteorol. i gidrol. 2013. N 9. P. 21–30.
  3. Romanskij S.O., Vebitskaya E.M. Kratkosrochnyj chislennyj prognoz pogody vysokogo prostranstvennogo razresheniya po Vladivostoku na baze modeli WRF–ARW // Vestn. DVO RAN. 2014. N 5. P. 48–57.
  4. Shihov A.N., Bykov A.V. Otsenka kachestva prognoza mezomasshtabnyh konvektivnyh sistem na Zapadnom Urale s pomoshch'yu modeli WRF i sputnikovyh dannyh MODIS // Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa. 2016. V. 13, N 1. P. 137–148.
  5. Atmosfernaya turbulentnost' i modelirovanie rasprostraneniya primesej / pod red. F.T.M. N'istadta, H. Van Dopa. L.: Gidrometeoizdat, 1985. 352 p.
  6. Byzova N.L., Ivanov V.N., Garger E.K. Turbulentnost' v pogranichnom sloe atmosfery. L.: Gidrometeoizdat, 1989. 264 p
  7. Zhou B., Xue M., Zhu K. A grid-refinement-based approach for modeling the convective boundary layer in the gray zone: A pilot study // J. Atmos. Sci. 2017. V. 74, N 11. P. 3497–3513.
  8. Zhou B., Xue M., Zhu K. A grid-refinement-based approach for modeling the convective boundary layer in the gray zone: Algorithm implementation and testing // J. Atmos. Sci. 2018. V. 75, N 4. P. 1143–1161.
  9. Shin H.H., Hong S.-Y. Representation of the subgrid-scale turbulent transport in convective boundary layers at gray-zone resolutions // Mon. Weather Rev. 2015. V. 143, N 1. P. 250–271.
  10. Efstathiou G.A., Plant R.S., Bopape M.-J.M. Simulation of an evolving convective boundary layer using a scale-dependent dynamic Smagorinsky model at near-gray-zone resolutions // J. Appl. Meteorol. Climatol. 2018. V. 57, N 9. P. 2197–2214.
  11. Ito J., Niino H., Mikio Nakanishi M., Moeng C.-H. An extension of the Mellor–Yamada model to the Terra Incognita zone for dry convective mixed layers in the free convection regime // Bound.-Lay. Meteorol. 2015. V. 157, N 1. P. 23–43.
  12. Honnert R., Couvreux F., Masson V., Lancz D. Sampling the structure of convective turbulence and implications for grey-zone parametrizations // Bound.-Lay. Meteorol. 2016. V. 160, N 1. P. 133–156.
  13. Lancz D., Szintai B., Honnert R. Modification of a parametrization of shallow convection in the gray zone using mesoscale model // Bound.-Lay. Meteorol. 2018. V. 169, N 3. P. 483–503.
  14. Honnert R. Grey-zone turbulence in the neutral atmospheric boundary layer // Bound.-Lay. Meteorol. 2019. V. 170, N 2. P. 191–204.
  15. Kealy J.C., Efstathiou G.A., Beare R.J. The onset of resolved boundary-layer turbulence at grey-zone resolutions // Bound.-Lay. Meteorol. 2019. V. 171, N 1. P. 31–52.
  16. Gladkih V.A., Makienko A.E. Tsifrovaya ul'trazvukovaya meteostantsiya // Pribory. 2009. N 7. P. 21–25.
  17. Gladkih V.A., Nevzorova I.V., Odintsov S.L. Metodicheskie aspekty opredeleniya vneshnih masshtabov turbulentnosti // Uspekhi sovremennogo estestvoznaniya. 2018. N 5. P. 64–70.
  18. Gladkih V.A., Nevzorova I.V., Odintsov S.L. Statistika vneshnih masshtabov turbulentnosti v prizemnom sloe atmosfery // Optika atmosf. i okeana. 2019. V. 32, N 3. P. 212–220; Odintsov S.L., Gladkikh V.A., Nevzorova I.V. Statistics of outer turbulence scales in the surface air layer // Atmos. Ocean. Opt. 2019. V. 32, N 4. P. 450–458.
  19. Odintsov S.L., Fedorov V.A. Issledovanie variatsij skorosti vetra mezometeorologicheskogo masshtaba po sodarnym nablyudeniyam // Optika atmosf. i okeana. 2007. V. 20, N 11. P. 986–993.
  20. Kamardin A.P., Gladkih V.A., Dervoedov A.S., Nevzorova I.V., Odintsov S.L., Fedorov V.A. K voprosu o vzaimosvyazi vertikal'nyh i gorizontal'nyh turbulentnyh potokov tepla v pogranichnom sloe atmosfery // Tr. XXV Mezhdunar. simpoz. «Optika atmosf. i okeana. Fizika atmosfery». 30 june – 5 july 2019 year, Novosibirsk. Tomsk: Izd-vo IOA SO RAN. P. D263–D266.