Vol. 34, issue 01, article # 4

Razenkov I. A. Capabilities of a turbulent BSE-lidar for the study of the atmospheric boundary layer. // Optika Atmosfery i Okeana. 2021. V. 34. No. 01. P. 26–35. DOI: 10.15372/AOO20210104 [in Russian].
Copy the reference to clipboard

Abstract:

In order to study the capabilities of a turbulent lidar, an experiment was conducted using the BSE-4 system, a meteorological measuring system, and an MTP-5 temperature profiler. The profile of the structure constant of the refractive index  up to an altitude of 2 km was determined using the lidar at an interval of 15 seconds. Experimental data on the intensity of dynamic turbulence when the wind increases over rough terrain are presented. Lidar operation under buoyant convection conditions allowed us to observe the movement of thermals and the formation of Cu clouds in the boundary layer. Under the conditions of cellular convection, the lidar recorded quasi-periodic oscillations of  (Benard cells), which represented a stationary wave. Under stable temperature stratification, when the Richardson number was less than 1/4, the turbulent lidar detected the appearance of a Kelvin-Helmholtz wave.

Keywords:

atmospheric turbulence, atmospheric waves, backscatter enhancement effect, lidar

References:

1. Vinogradov A.G., Gurvich A.S., Kashkarov S.S., Kravtsov Yu.A., Tatarskij V.I. «Zakonomernost' uvelicheniya obratnogo rasseyaniya voln». Svidetel'stvo na otkrytie N 359. Prioritet otkrytiya: 25 august 1972 year v chasti teoreticheskogo obosnovaniya i 12 august 1976 year v chasti eksperimental'nogo dokazatel'stva zakonomernosti. Gosudarstvennyj reestr otkrytij SSSR // Byull. izobretenij. 1989. N 21.
2. Vinogradov A.G., Kravtsov Yu.A., Tatarskij V.I. Effekt usileniya obratnogo rasseyaniya na telah, pomeshchennyh v sredu so sluchajnymi neodnorodnostyami // Izv. vuzov. Radiofiz. 1973. V. 16, N 7. P. 1064–1070.
3. Kravtsov Yu.A., Saichev A.I. Effekty dvukratnogo prohozhdeniya voln v sluchajno neodnorodnyh sredah. // Uspekhi fiz. nauk. 1982. V. 137, issue 3. P. 501–527.
4. Gurvich A.S. Lidarnoe zondirovanie turbulentnosti na osnove usileniya obratnogo rasseyaniya // Izv. RAN. Fiz. atmosf. i okeana. 2012. V. 48, N 6. P. 655–665.
5. Gurvich A.S. Lidarnoe pozitsionirovanie oblastej povyshennoj turbulentnosti yasnogo neba // Izv. RAN. Fiz. atmosf. i okeana. 2014. V. 50, N 2. P. 166–174.
6. Banah V.A., Razenkov I.A. Lidarnye izmereniya usileniya obratnogo rasseyaniya // Opt. i spektroskop. 2016. V. 120, N 2. P. 339–348.
7. Razenkov I.A. Turbulentnyj lidar. I. Konstruktsiya // Optika atmosf. i okeana. 2018. V. 31, N 1. P. 41–48; Rаzenkov I.А. Turbulent lidar: I – Desing // Atmos. Ocean. Opt. 2018. V. 31, N 3. P. 273–280.
8. Razenkov I.A., Banakh V.A., Gorgeev E.V. Lidar “BSE-4” for the atmospheric turbulence measurements. Proc. SPIE. V. 10833. DOI: 10.1117/12.2505183 (last access: 20.09.2020).
9. Razenkov I.A., Nadeev A.I., Zajtsev N.G., Gordeev E.V. Ul'trafioletovyj turbulentnyj lidar BSE-5 // Optika atmosf. i okeana. 2020. V. 33, N 4. P. 289–297; Razenkov I.A., Nadeev A.I., Zaitsev N.G., Gordeev E.V. Turbulent UV Lidar BSE-5 // Atmos. Ocean. Opt. 2020. V. 33, N 4. P. 406–414.
10. Gurvich A.S., Kon A.I., Mironov V.L., Hmelevtsov S.S. Lazernoe izluchenie v turbulentnoj atmosfere. M.: Nauka, 1976. 280 p.
11. Razenkov I.A. Eksperimental'naya otsenka pika uvelicheniya obratnogo rasseyaniya // Optika atmosf. i okeana. 2020. V. 33, N 11. P. 874–879.
12. Vorob'ev V.V. O primenimosti asimptoticheskih formul vosstanovleniya parametrov «opticheskoj» turbulentnosti iz dannyh impul'snogo lidarnogo zondirovaniya. I. Uravneniya // Optika atmosf. i okeana. 2016. V. 29, N 10. P. 870–875; Vorob’ev V.V. On the applicability of asymptotic formulas of retrieving “optical” turbulence parameters from pulse lidar sounding data: I – Equations // Atmos. Ocean. Opt. 2017. V. 30, N 2. P. 156–161.
13. Razenkov I.A. Otsenka intensivnosti turbulentnosti iz lidarnyh dannyh // Optika atmosf. i okeana. 2020. V. 33, N 1. P. 1–9; Razenkov I.A. Estimation of the turbulence intensity from lidar data // Atmos. Ocean. Opt. 2020. V. 33, N 3. P. 245–253.
14. Razenkov I.A. Optimizatsiya parametrov turbulentnogo lidara // Optika atmosf. i okeana. 2019. V. 32, N 1. P. 70–81; Razenkov I.A. Optimization of parameters of a turbulent lidar // Atmos. Ocea. Opt. 2019. V. 32, N 3. P. 349–360.
15. Razenkov I.A. Spetsifika zondirovaniya pogranichnogo sloya atmosfery turbulentnym lidarom // Optika atmosf. i okeana. 2020. V. 33, N 8. P. 643–648.
16. Razenkov I.A. Turbulentnyj lidar. II. Eksperiment // Optika atmosf. i okeana. 2018. V. 31, N 2. P. 81–89; Rаzenkov I.А. Turbulent lidar: II –Experiment // Atmos. Ocean. Opt. 2018. V. 31, N 3. P. 281–289.
17. Shuster G.G. Determinirovannyj haos: Vvedenie. M.: Mir, 1988. 240 p.
18. Nosov V.V., Lukin V.P., Kovadlo P.G., Nosov E.V., Torgaev A.V. Opticheskie svojstva turbulentnosti v gornom pogranichnom sloe atmosfery. Novosibirsk: Izd-vo SO RAN. 2016. 153 p.
19. Nosov V.V. Atmospheric turbulence in the anisotropic boundary layer // Optical Waves and Laser Beams in the Irregular Atmosphere. Boca Raton, London, New York: Taylor & Francis Group, CRC Press. 2018. Ch. 3. P. 67–180.
20. Gimmestad G.G., Roberts D.W., Stewart J.M., Wood J.W. Development of a lidar technique for profiling optical turbulence // Opt. Engineer. 2012. V. 51(10). P. 101713.
21. URL: https://lop.iao.ru/ (last access: 20.09.2020).
22. URL: http://attex.net/RU/mtp5.php (last access: 20.09.2020).
23. Shmeter S.M. Fizika konvektivnyh oblakov. L.: Gidrometeoizdat, 1972. 232 p.
24. Shakina N.P. Gidrodinamicheskaya neustojchivost' v atmosfere. L.: Gidrometeoizdat, 1990. 308 p.
25. Gossard E., Huk U. Volny v atmosfere. M.: Mir, 1978. 532 p.
26. Miles J.W. On the stability of heterogeneous shear flow // J. Fluid Mech. 1961. V. 10, N 4. P. 496–509.
27. Odintsov S.L. Osobennosti dvizhenij nizhnego sloya atmosfery pri prohozhdenii vnutrennih gravitatsionnyh voln // Optika atmosf. i okeana. 2002. V. 15, N 12. P. 1131–1136.
28. Dinamika volnovyh i obmennyh protsessov v atmosfere / Chkhetiani O.G., Gorbunova M.E., Kulichkova S.N., Repina I.A. (red.). M.: GEOS, 2017. 508 p.
29. Shakina N.P., Ivanova A.R. Prognozirovanie meteorologicheskih uslovij dlya aviatsii. M.: TRIADA LTD, 2016. 312 p.