Vol. 33, issue 12, article # 9

Sosnin E. A., Kuznetsov V. S., Panarin V. A., Skakun V. S., Tarasenko V. F., Ivlev G. A., Kozlov A. V. Formation of nitrogen oxides in a laboratory discharge simulating blue jets. // Optika Atmosfery i Okeana. 2020. V. 33. No. 12. P. 958–961. DOI: 10.15372/AOO20201209 [in Russian].
Copy the reference to clipboard

Abstract:

Using of apokamp discharge carried out on a laboratory simulation of the process of formation of blue jets in the Middle atmosphere of the Earth. The developed setup allowed to compare the NOx concentration in the apokamp discharge mode and without it. In both cases, at an air pressure of 120 torr, close values of NO and NO2 were obtained, amounting to 7320 and 1220 ppb, respectively. The data obtained in a laboratory experiment indicate that blue jets do not significantly affect the concentration of nitrogen oxides.

Keywords:

apokamp discharge, blue jet, nitrogen oxides, transient light phenomena

References:

  1. Cohen R.C., Murphy J.G. Photochemistry of NO2 in Earth’s stratosphere: Constraints from observations // Chem. Rev. 2003. V. 103, N 12. P. 4985–4998.
  2. Jourdain L., Hauglustaine D.A. The global distribution of lightning NOx simulated on-line in a general circulation model // Phys. Chem. Earth Part C. 2001. V. 26, N 8. P. 585–591.
  3. Neubert T. Rycroft M., Farges T., Blanc E., Chanrion O., Arnone E., Odzimek A., Arnold N., Enell C.-F., Turunen E., Bosinger T., Mika A., Haldoupis C., Steiner R.J., van der Velde O., Soula S., Berg P., Boberg F., Thejll P., Christiansen B., Ignaccolo M., Fullekrug M., Verronen P.T., Montanya J., Crosby N. Recent results from studies of electric discharges in the mesosphere // Surv. Geophys. 2008. V. 29. P. 71–137.
  4. Peterson H., Bailey M., Hallett J., Beasley W. NOx production in laboratory discharges simulating blue jets and red sprites // J. Geophys. Res. 2009. V. 114, N A00E07.
  5. Nijdam S., van Veldhuizen E.M., Ebert U. NOx production in laboratory discharges simulating blue jets and red sprites // J. Geophys. Res. 2010. V. 115, N A12305.
  6. Sosnin E.A., Najdis G.V., Tarasenko V.F., Skakun V.S., Panarin V.A., Babaeva N.Yu. O fizicheskoj prirode apokampicheskogo razryada // ZhETF. 2017. V. 152, N 5(11). P. 1081–1087.
  7. Sosnin E.A., Gol'tsova P.A., Panarin V.A., Skakun V.S., Tarasenko V.F., Didenko M.V. Formirovanie okislov azota v istochnike plazmy na osnove apokampa // Izv. vuzov. Fiz. 2017. V. 60, N 4. P. 126–130.
  8. Sosnin E.A., Kuznetsov V.S., Panarin V.A., Skakun V.S., Tarasenko V.F. Laboratornoe modelirovanie vliyaniya vulkanicheskogo veshchestva na formirovanie tranzientnyh yavlenij vblizi granitsy srednej i nizhnej atmosfery // Optika atmosf. i okeana. 2020. V. 33, N 3. P. 227–231; Sosnin E.A., Kuznetsov V.S., Panarin V.A., Skakun V.S., Tarasenko V.F. Laboratory simulation of the effect of volcanic material on the formation of transient phenomena near the boundary between the middle and lower atmosphere // Atmos. Ocean. Opt. 2020. V. 33, N 4. P. 419–423.
  9. Sosnin E.A., Babaeva N.Yu., Kozyrev A.V., Kozhevnikov V.Yu., Najdis G.V., Panarin V.A., Skakun V.S., Tarasenko V.F. Modelirovanie tranzientnyh svetovyh yavlenij srednej atmosfery Zemli c pomoshch'yu apokampicheskogo razryada // Uspekhi fiz. nauk. 2020. DOI: 10.3367/UFNr.2020.03.038735 (in print).
  10. Winkler H., Notholt J. A model study of the plasma chemistry of stratospheric Blue Jets // J. Atmos. Sol.-Terr. Phys. 2015. V. 122. P. 75–85.
  11. Eliasson B., Kogelschatz U. Modeling and applications of silent discharge plasmas // IEEE Trans. Plasma Sci. 1991. V. 19, N 2. P. 309–323.