Vol. 33, issue 12, article # 1

Vinogradova A. A., Vasil'ev A. V., Ivanova Yu. A. Black carbon air pollution near the Wrangel Island: comparison of Eurasian and American sources and their contributions. // Optika Atmosfery i Okeana. 2020. V. 33. No. 12. P. 907–912. DOI: 10.15372/AOO20201201 [in Russian].
Copy the reference to clipboard

Abstract:

We analyze long-range atmospheric transport of black carbon (BC) to the Wrangel Island in the summer months (June–August) of 2015–2017. Air mass trajectories were calculated using the HYSPLIT model on the ARL NOAA website www.ready.arl.noaa.gov. The simplified model of an aerosol impurity transport in the atmosphere based on spatial distribution of sensitivity function to impurity emissions was used. The spatial locations of BC sources (anthropogenic and wildfires) and their emissions were taken from the websites http://edgar. jrc.ec.europa.eu/overview.php?v=431 and http://www.globalfiredata.org, respectively. We study and compare intensities, spatial locations, and interannual variations in BC anthropogenic and wildfire emissions to the atmosphere from the North-Eastern Eurasia and the North-Western North America. The contribution of Eurasian sources absolutely prevails over the contribution of American ones in surface BC concentration at the Wrangel Island. But, on the average, summertime contributions from wildfires and anthropogenic sources (without dividing them by territories) do not greatly differ, with the ratio ~ 5:3.

Keywords:

atmosphere, pollution, black carbon, the Wrangel Island, long-range atmospheric transport, sources of black carbon, Eurasian and American contributions

Figures:

References:

  1. Hirdman D., Sodemann H., Eckhardt S., Burkhart J.F., Jefferson A., Mefford T., Quinn P.K., Sharma S., Strom J., Stohl A. Source identification of short-lived air pollutants in the Arctic using statistical analysis of measurement data and particle dispersion model output // Atmos. Chem. Phys. 2010. V. 10, N 2. P. 669–693.
  2. Cheng M.-D. Geolocating Russian sources for Arctic black carbon // Atmos. Environ. 2014. V. 92, N 4. P. 398–410.
  3. Radionov V.F., Kabanov D.M., Pol'kin V.V., Sakerin S.M., Izosimova O.N. Harakteristiki aerozolya nad arkticheskimi moryami Evrazii: rezul'taty izmerenij 2018 goda i srednee prostranstvennoe raspredelenie v letnee-osennie periody 2007–2018 years // Problemy Arktiki i Antarktiki. 2019. V. 65, N 4. P. 405–421.
  4. Park J., Dall’Osto M., Park K., Gim Y., Kang H.J., Jang E., Park K.-T., Park M., Yum S.S., Jung J., Lee B.Y., Yoon Y.J. Shipborne observations reveal contrasting Arctic marine, Arctic terrestrial and Pacific marine aerosol properties // Atmos. Chem. Phys. 2020. V. 20, N 5. P. 5573–5590.
  5. Fukasawa T, Ohta S, Murao N, Yamagata S, Makarov V.N. Aerosol observations in the Siberian Arctic // Proc. NIPR Symp. Polar Meteorol. Glaciol. 1997. V. 11. P. 150–160.
  6. International Arctic Systems for Observing the Atmosphere. URL: https://psl.noaa.gov/iasoa/ (last access: 5.10.2020).
  7. Vinogradova A.A., Ponomareva T.Ya. Atmosfernyj perenos antropogennyh primesej v arkticheskie rajony Russia (1986–2010 years) // Optika atmosf. i okeana. 2012. V. 25, N 6. P. 475–483; Vinogradova A.A., Ponomareva T.Ya. Atmospheric transport of anthropoge­nic impurities to the Russian Arctic (1986–2010) // Atmos. Ocean Opt. 2012. V. 25, N 6. P. 414–422.
  8. Недре А.Ю. Ежегодник выбросов загрязняющих веществ в атмосферный воздух городов и регионов Российской Федерации за 2010 год. СПб: НИИ Атмосфера, 2011. 560 с.
  9. Meteorologicheskij sinteziruyushchij tsentr «Vostok». URL: http://www.msceast.org (data obrashcheniya: 5.10.2020).
  10. AMAP Assessment 2015: Black carbon and ozone as Arctic climate forcers. Arctic Monitoring and Assessment Programme (AMAP). Oslo, Norway, 2015. 116 p. ISBN 978-82-7971-092-9.
  11. Evangeliou N., Balkanski Y., Hao W.M., Petkov A., Silverstein R.P., Corley R., Nordgren B.L., Urbanski S.P., Eckhardt S., Stohl A., Tunved P., Crepinsek S., Jefferson A., Sharma S., Nøjgaard J.K., Skov H. Wildfires in northern Eurasia affect the budget of black carbon in the Arctic – a 12-year retrospective synopsis (2002–2013) // Atmos. Chem. Phys. 2016. V. 16, N 12. P. 7587–7604.
  12. ARL NOAA. Air Resources Laboratory. URL: http:// www.arl.noaa.gov/ready/ (last access: 5.10.2020).
  13. EDGAR. Emissions database for Global Atmospheric Research. URL: http://edgar.jrc.ec.europa.eu/overview.php?v=431 (last access: 5.10.2020).
  14. GFED. Global Fire Emissions Database. URL: http://www.globalfiredata.org (last access: 5.10.2020).
  15. Vinogradova A.A. Distantsionnaya otsenka vliyaniya zagryazneniya atmosfery na udalennye territorii // Geofiz. protsessy i biosf. 2014. V. 13, N 4. P. 5–20.
  16. Vinogradova A.A., Ivanova Yu.A. Perenos vozdushnyh mass i zagryaznenij k arkticheskim ostrovam Rossii (1986–2016): dolgovremennye, mezhgodovye i sezonnye variatsii // Geofiz. protsessy i biosfpozhary v Sibiri i na Dal'nem Vostoke: emissii i atmosfernyj perenos chernogo ugleroda v Arktiku. 2017. V. 16, N 4. P. 5–20.
  17. Vinogradova A.A., Smirnov N.S., Korotkov V.N., Romanovskaya A.A. Lesnye pozhary v Sibiri i na Dal'nem Vostoke: emissii i atmosfernyj perenos chernogo ugleroda v Arktiku // Optika atmosf. i okeana. 2015. V. 28, N 6. P. 438–445; Vinogradova A.A., Smirnov N.S., Korotkov V.N., Romanovskaya A.A. Forest fires in Siberia and the Far East: Emissions and atmospheric transport of black carbon to the Arctic // Atmos. Ocean. Opt. 2015. V. 28, N 6. P. 566–574.
  18. Vinogradova A.A., Vasil'eva A.V. Model'nye otsenki kontsentratsii chernogo ugleroda v prizemnom vozduhe severnyh rajonov Russia // Optika atmosf. i okeana. 2017. V. 30, N 6. P. 467–475; Vinogradova A.A., Vasileva A.V. Black carbon in air over northern regions of Russia: Sources and spatiotemporal variations // Atmos. Ocean. Opt. 2017. V. 30, N 6. P. 533–541.
  19. Bond T.C., Doherty S.J., Fahey D.W., Forster P.M., Berntsen T., DeAngelo B.J., Flanner M.G., Ghan S., Kärcher B., Koch D., Kinne S., Kondo Y., Quinn P.K., Sarofim M.C., Schultz M.G., Schulz M., Venkataraman C., Zhang H., Zhang S., Bellouin N., Guttikunda S.K., Hopke P.K., Jacobson M.Z., Kaiser J.W., Klimont Z., Lohmann U., Schwarz J.P., Shindell D., Storelvmo T., Warren S.G., Zender C.S. Bounding the role of black carbon in the climate system: A scientific assessment // J. Geophys. Res.: Atmos. 2013. V. 118, N 11. P. 5380–5552.
  20. Vinogradova A.A., Veremejchik A.O. Model'nye otsenki soderzhaniya antropogennoj sazhi (black carbon) v atmosfere Rossijskoj Arktiki // Optika atmosf. i okeana. 2013. V. 26, N 6. P. 443–451.
  21. Vinogradova A.A., Titkova T.B. Temperatura vozduha i kontsentratsiya chernogo ugleroda v prizemnoj atmosfere v rajone Tiksi, Yakutiya // Geofiz. protsessy i biosf. 2019. V. 18, N 4. P. 15–21.
  22. Zhuravleva T.B., Nasrtdinov I.M., Vinogradova A.A. Pryamye radiatsionnye effekty dymovogo aerozolya v rajone st. Tiksi (Rossijskaya Arktika): predvaritel'nye rezul'taty // Optika atmosf. i okeana. 2019. V. 32, N 1. P. 29–38; Zhuravleva T.B., Nasrtdinov I.M., Vinogradova A.A. Direct radiative effects of smoke aerosol in the region of Tiksi station (Russian Arctic): Preliminary results // Atmos. Ocean. Opt. 2019. V. 32, N 3. P. 296–305.