Vol. 33, issue 10, article # 9

Nerobelov G. M., Timofeev Yu. M., Smyshlyaev S. P., Virolainen Ya. A., Makarova M. V., Foka S. Ch. Comparison of CAMS data on CO2 content and measurements in Petergof. // Optika Atmosfery i Okeana. 2020. V. 33. No. 10. P. 805–810. DOI: 10.15372/AOO20201009 [in Russian].
Copy the reference to clipboard

Abstract:

Mixing ratio of carbon dioxide (CO2) for 2018 from CAMS database was compared with those from in situ and remote measurements carried out in Petergof (St. Petersburg, Russia). The analysis shows that the differences in surface CO2 concentration from CAMS and measurements and the correlation coefficients significantly varied depending on months. Ground-based and satellite spectroscopic measurements of column averaged CO2 mixing ratio are in a good agreement with CAMS. Even though the CAMS data which was analyzed in current research requires further development, our results have shown that the CAMS data can be used in resolving an inverse problem to derive anthropogenic emissions for the territory of Saint-Petersburg and its suburbs.

Keywords:

carbon dioxide, gas-content databases, CAMS, in situ and remote measurements, surface concentration, column averaged mixing ratio, annual variation

References:

  1. Stocker T.F., Qin D., Plattner G.-K., Tignor M., Allen S.K., Boschung J., Nauels A., Xia Y., Bex V., Midgley P.M. IPCC 2013: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, UK, New York, USA: Cambridge University Press, 2013. P. 1535.
  2. Crisp D., Meijer Y., Munro R., Bowman K., Chatterjee A., Baker D., Chevallier F., Nassar R., Palmer P.I., Agusti-Panareda A., Al-Saadi J., Ariel Y., Basu S., Bergamaschi P., Boesch H., Bousquet P., Bovensmann H., Bréon F., Brunner D., Buchwitz M., Buisson F., Burrows J.P., Butz A., Ciais P., Clerbaux C., Counet P., Crevoisier C., Crowell S., DeCola P.L., Deniel C., Dowell M., Eckman R., Edwards D., Ehret G., Eldering A., Engelen R., Fisher B., Germain S., Hakkarainen J., Hilsenrath E., Holmlund K., Houweling S., Hu H., Jacob D., Janssens-Maenhout G., Jones D., Jouglet D., Kataoka F., Kiel M., Kulawik S.S., Kuze A., Lachance R.L., Lang R., Landgraf J., Liu J., Liu Y., Maksyutov S., Matsunaga T., McKeever J., Moore B., Nakajima M., Natraj V., Nelson R.R., Niwa Y., Oda T., O’Dell C.W., Ott L., Patra P., Pawson S., Payne V., Pinty B., Polavarapu S.M., Retscher C., Rosenberg R., Schuh A., Schwandner F.M., Shiomi K., Su W., Tamminen J., Taylor T.E., Veefkind P., Veihelmann B., Wofsy S., Worden J., Wunch D., Yang D., Zhang P., Zehner C. A constellation architecture for monitoring carbon dioxide and methane from space [Electronic resource]. URL: http://ceos.org/document_management/Virtual_Constellations/ACC/Documents/CEOS_AC-VC_GHG_White_Paper_Publication_Draft2_20181111.pdf (last access: 30.03.2020).
  3. Enting I.G. Inverse Problems in Atmospheric Constituent Transport. Cambridge, UK: Cambridge University Press, 2002. 392 р. DOI: 10.1017/CBO9780511535741.
  4. Engelen R. CAMS Service Product Portfolio // ECMWF. 2018 [Electronic resource]. URL: https://atmosphere.copernicus.eu/sites/default/files/2018-12/CAMS%20Service%20Product%20Portfolio%20-%20July%202018.pdf (last access: 30.03.2020).
  5. Wagner A., Schulz M., Christophe Y., Ramonet M., Eskes H.J., Basart S., Benedictow A., Bennouna Y., Blechschmidt A.-M., Chabrillat S., Clark H., Cuevas E., Flentje H., Hansen K.M., Im U., Kapsomenakis J., Langerock B., Richter A., Sudarchikova N., Thouret V., Warneke T., Zerefos C. Validation report of the CAMS near-real-time global atmospheric composition service: September-November 2018, Copernicus Atmosphere Monitoring Service (CAMS) report [Electronic resource]. URL: https://atmosphere.copernicus.eu/sites/ default / files / 2019-03 / 16_CAMS84_2018SC1_D1.1.1_ SON2018_v1.pdf (last access: 30.03.2020).
  6. Hans W., Chen L.N., Zhang Fuqing Zhang Kenneth J. Davis Thomas Lauvaux Sandip Pal Brian Gaudet Joshua P. Di Gangi. Evaluation of Regional CO2 Mole Fractions in the ECMWF CAMS Real-Time Atmospheric Analysis and NOAA Carbon Tracker Near-Real-Time Reanalysis With Airborne Observations From ACT – America Field Campaigns // J. Geophys. Res.: Atmos. 2019. V. 124, iss. 14. P. 8119–8133.
  7. Validation report for the CO2 fluxes estimated by atmospheric inversion, v18r3 Version 1.0. Issued by: CEA / F. Chevallier (ed.). [Electronic resource]. URL: https://atmosphere.copernicus.eu/sites/default/files/2019-11/CAMS73_2018SC1_D73.1.4.1-2018-v2_201911_ v1.pdf (last access: 30.03.2020).
  8. Hourdin F., Musat I., Bony S., Braconnot P., Cordon F., Dufresne J., Fairhead L., Filiberti M., Friedlingstein P., Grandpeix J., Krinner G., LeVan P., Li Z., Lott F. The LMDZ4 general circulation model: Climate performance and sensitivity to parametrized physics with emphasis on tropical convection // Clim. Dyn. 2006. P. 787–813.
  9. Remaud M., Chevallier F., Cozic A., Xin Lin, Bousquet Ph. On the impact of recent developments of the LMDz atmospheric general circulation model on the simulation of CO2 transport // Geosci. Model Dev.  2018. V. 11. P. 4489–4513. DOI: 10.5194/gmd-11-4489-2018.
  10. Foka S.Ch., Makarova M.V., Poberovskij A.V., Timofeev Yu.M. Vremennye variatsii kontsentratsii СО2, СН4 i СО v prigorode Sankt-Peterburga (Petergof) // Optika atmosf. i okeana. 2019. V. 32, N 10. P. 860–866.
  11. Timofeyev Yu., Virolainen Ya., Makarova M., Poberovsky A., Polyakov A., Ionov D., Osipov S., Imhasin H. Ground-based spectroscopic measurements of atmospheric gas composition near Saint Petersburg (Russia) // J. Mol. Spectrosc. 2016. V. 323. P. 2–14. DOI: 10.1016/j.jms.2015.12.007.
  12. Timofeyev Yu.M., Berezin I.A., Virolainen Ya.A., Makarova M.V., Polyakov A.V., Poberovsky A.V., Filippov N.N., Foka S.Ch. Prostranstvenno-vremennye variatsii soderzhaniya CO2 po dannym sputnikovyh i nazemnyh izmerenij vblizi Sankt-Peterburga // Izv. RAN. Fiz. atmosf. i okeana. 2019. V. 55, N 1. P. 65–72. DOI: 10.31857/S0002-351555165-72.
  13. Barthlott S., Schneider M., Hase F., Wiegele A., Christner E., González Y., Blumenstock T., Dohe S., García O.E., Sepúlveda E., Strong K., Mendonca J., Weaver D., Palm M., Deutscher N.M., Warneke T., Notholt J., Lejeune B., Mahieu E., Jones N., Griffith D.W.T., Velazco V.A., Smale D., Robinson J., Kivi R., Heikkinen P., Raffalski U. Using XCO2 retrievals for assessing the long-term consistency of NDACC/FTIR data sets // Atmos. Meas. Tech. 2015. V. 8. P. 1555–1573. DOI: 10.5194/amt-8-1555-2015.
  14. Wunch D., Wennberg P.O., Osterman G., Fisher B., Naylor B., Roehl C.M., O'Dell C., Mandrake L., Viatte C., Kiel M., Griffith D.W.T., Deutscher N.M., Velazco V.A., Notholt J., Warneke T., Petri C., De Maziere M., Sha M.K., Sussmann R., Rettinger M., Pollard D., Robinson J., Morino I., Uchino O., Hase F., Blumenstock T., Feist D.G., Arnold S.G., Strong K., Mendonca J., Kivi R., Heikkinen P., Iraci L., Podolske J., Hillyard P.W., Kawakami S., Dubey M.K., Parker H.A., Sepulveda E., García O.E., Te Y., Jeseck P., Gunson M.R., Crisp D., Eldering A. Comparisons of the Orbiting Carbon Observatory-2 (OCO-2) XCO2 measurements with TCCON // Atmos. Meas. Tech. 2017. V. 10. P. 2209–2238. DOI: 10.5194/amt-10-2209-2017.
  15. Virolainen Ya.A. Metodicheskie aspekty opredeleniya soderzhaniya uglekislogo gaza v atmosfere s pomoshch'yu IK-Fur'e-spektrometrii // Zhurn. prikl. spektroskopii. 2018. V. 85, N 3. P. 453–460.