Vol. 33, issue 07, article # 7

Arshinov M. Yu., Belan B. D., Davydov D. K., Kozlov A. V., Fofonov A. V., Arshinova V. G. Investigation of the spatial distribution of CO2 and CH4 in the atmospheric surface layer over Western Siberia using a mobile platform. // Optika Atmosfery i Okeana. 2020. V. 33. No. 07. P. 544–552. DOI: 10.15372/AOO20200707 [in Russian].
Copy the reference to clipboard

Abstract:

The results of a large-scale investigation of carbon dioxide and methane distribution carried out in Western Siberia in 2018–2019 using a Picarro G4301 portable gas concentration analyzer are presented. The analysis of the obtained data enabled the spatial distribution of background concentrations of CO2 and CH4 to be retrieved with a high resolution. The revealed inhomogeneities in the CO2 and CH4 distribution is a result of both the effect of ecosystem features in different regions of West Siberia and the characteristics of their seasonal cycles.

Keywords:

atmospheric composition, greenhouse gases, spatial distribution

Figures:

References:

  1. McNutt M. Times’s up, CO2 // Science. 2019. V. 365, N 6432. P. 411.
  2. George S.S. Aberrant synchrony of present-day warming // Nature. 2019. V. 571, N 7766. P. 481–482.
  3. Neukom R., Steiger N., Gómez-Navarro J.J., Wang J., Werner J.P. No evidence for globally coherent warm and cold periods over the preindustrial Common Era // Nature. 2019. V. 571, N 7766. P. 550–554.
  4. Byulleten' VMO po parnikovym gazam N 15. Soderzhanie parnikovyh gazov v atmosfere po dannym global'nyh nablyudenij v 2018 year. 25 november 2019 year // VMO, Otdel issledovanij atmosfernoj sredy, Departament nauchnyh issledovanij, Zheneva. 6 p.
  5. Höhne N., den Elzen M., Rogelj J., Metz B., Fransen T., Kuramochi T., Olhoff A., Alcamo J., Winkler H., Fu S., Schaeffer M., Schaeffer R., Peters G.P., Maxwell S., Dubash N.K. Emissions: world has four times the work or one-third of the time // Nature. 2020. V. 579, N 7797. P. 25–28.
  6. GAW Report No 206. Workshop Proceedings of the 6th WMO/IAEA Meeting on Carbon Dioxide, Other Greenhouse Gases, and Related Measurement Techniques (GGMT-2011), Wellington, New Zealand, 25–28 October 2011. 2012. 67 p
  7. Andrews A.E., Kofler J.D., Trudeau M.E., Williams J.C., Neff D.H., Masarie K.A., Chao D.Y., Kitzis D.R., Novelli P.C., Zhao C.L., Dlugokencky E.J., Lang P.M., Crotwell M.J., Fischer M.L., Parker M.J., Lee J.T., Baumann D.D., Desai A.R., Stanier C.O., De Wekker S.F.J., Wolfe D.E., Munger J.W., Tans P.P. CO2, CO, and CH4 measurements from tall towers in the NOAA Earth System Research Laboratory's Global Greenhouse Gas Reference Network: Instrumentation, uncertainty analysis, and recommendations for future high-accuracy greenhouse gas monitoring efforts // Atmos. Meas. Tech. 2014. V. 7, N 2. P. 647–687. DOI: 10.5194/amt-7-647-2014.
  8. URL: http://www.icos-infrastructure.eu/node/15/ (last access: 19.02.2020).
  9. Rammig A. Tropical carbon sinks are out of sync // Nature. 2020. V. 579, N 7797. P. 38–39.
  10. Belikov D., Arshinov M., Belan B., Davydov D., Fofonov A., Sasakawa M., Machida T. Analysis of the Diurnal, Weekly, and Seasonal Cycles and Annual Trends in Atmospheric CO2 and CH4 at Tower Network in Siberia from 2005 to 2016 // Atmos. 2019. V. 10, N 11. 689. DOI: 10.3390/atmos10110689.
  11. Schmidt A., Rella C.W., Göckede M., Hanson C., Yang Z., Law B.E. Removing traffic emissions from CO2 time series measured at a tall tower using mobile measurements and transport modeling // Atmos. Environ. 2014. V. 97. P. 94–108. DOI: 10.1016/j.atmosenv.2014.08.006.
  12. Shepherd T.G. Effects of a warming Arctic // Science. 2016. V. 353, N 6303. P. 989–990.
  13. Johannessen O.M., Kuzmina S.I., Bobylev L.P., Miles M.W. Surface air temperature variability and trends in the Arrctic: New amplification assessment and regionalisation // Tellus А. 2016. V. 68. DOI: 10.3402/tellusa.v68.28234.
  14. Sasakawa M., Shimoyama K., Machida T., Tsuda N., Suto H., Arshinov M., Davidov D., Fofonov A., Krasnov O., Saeki T., Koyama Y., Maksyutov S. Continuous Measurement of Methane Concentration using 9-tower Network over Siberia // Tellus B. 2010. V. 62, N 5. P. 403–416.
  15. Crosson E.R. A cavity ring-down analyzer for measuring atmospheric levels of methane, carbon dioxide, and water vapor // Appl. Phys. B. 2008. V. 92, N 3. Р. 403–408.
  16. Chen H., Winderlich J., Gerbig C., Hoefer A., Rella C.W., Crosson E.R., Van Pelt A.D., Steinbach J., Kolle O., Beck V., Daube B.C., Gottlieb E.W., Chow V.Y., Santoni G.W., Wofsy S.C. High-accuracy continuous airborne measurements of greenhouse gases (CO2 and CH4) using the cavity ring-down spectroscopy (CRDS) technique // Atmos. Meas. Tech. 2010. V. 3. N 2. P. 375–386. DOI: 10.5194/amt-3-375-2010.
  17. Nara H., Tanimoto H., Tohjima Y., Mukai H., Nojiri Y., Katsumata K., Rella C.W. Effect of air composition (N2, O2, Ar, and H2O) on CO2 and CH4 measurement by wavelength-scanned cavity ring-down spectroscopy: Calibration and measurement strategy // Atmos. Meas. Tech. 2012. V. 5, N 11. P. 2689–2701.
  18. Sinitsa L.N., Lugovskoj A.A., Serdyukov V.I., Arshinov M.Yu. Izmenenie koeffitsienta otrazheniya mnogoslojnyh dielektricheskih pokrytij pri variatsii vlazhnosti sredy // Optika atmosf. i okeana. 2018. V. 31, N 8. P. 601–608; Sinitsa L.N., Lugovskoi A.A., Serdyukov V.I., Arshinov M.Yu. Changes in the multilayer dielectric coating reflection coefficient under variation in the medium humidity // Atmos. Ocean. Opt. 2018. V. 31, N 6. P. 574–581.
  19. Serdyukov V.I., Sinitsa L.N., Lugovskoi A.A. Influence of gas humidity on the reflection coefficient of multilayer dielectric mirrors // Appl. Opt. 2016. V. 55, N 17. P. 4763–4768.
  20. Arshinov M.Yu., Belan B.D., Davydov D.K., Kozlov A.V., Fofonov A.V., Arshinova V.G. Heterogeneity of the spatial distribution of CO2 and CH4 concentrations in the atmospheric surface layer over West Siberia: October–november 2018 // Proc. SPIE. 2019. V. 11208. DOI: 10.1117/12.2539205.
  21. Pérez I.A., Sánchez M.L., García M.A., Pardo N. An experimental relationship between airflow and carbon dioxide concentrations at a rural site // Sci. Total Environ. 2015. V. 533. P. 432–438.
  22. Antohina O.Yu., Antohin P.N., Arshinova V.G., Arshinov M.Yu., Belan B.D., Belan S.B., Davydov D.K., Dudorova N.V., Ivlev G.A., Kozlov A.V., Rasskazchikova T.M., Savkin D.E., Simonenkov D.V., Sklyadneva T.K., Tolmachev G.N., Fofonov A.V. Issledovanie sostava vozduha v razlichnyh vozdushnyh massah // Optika atmosf. i okeana. 2018. V. 31, N 9. P. 752–759; Antokhina O.Yu., Antokhin P.N., Arshinova V.G., Arshinov M.Yu., Belan B.D., Davydov D.K., Dudorova N.V., Ivlev G.A., Kozlov A.V., Rasskazchikova T.M., Savkin D.E., Simonenkov D.V., Sklyadneva T.K., Tolmachev G.N., Fofonov A.V. Study of air composition in different air masses // Atmos. Ocean. Opt. 2019. V. 32, N 1. P. 72–79.
  23. Arshinov M.Yu., Belan B.D., Davydov D.K., Krasnov O.A., Macsutov Sh.Sh., Machida T., Sasakawa Motoki, Fofonov A.V. Osobennosti vertikal'nogo raspredeleniya uglekislogo gaza nad yugom Zapadnoj Sibiri v letnij period // Optika atmosf. i okeana. 2018. V. 31, N 8. P. 670–681.
  24. Antohina O.Yu., Antohin P.N., Arshinova V.G., Arshinov M.Yu., Belan B.D., Belan S.B., Davydov D.K., Dudorova N.V., Ivlev G.A., Kozlov A.V., Krasnov O.A., Maksyutov Sh.Sh., Machida T., Panchenko M.V., Pestunov D.A., Rasskazchikova T.M., Savkin D.E., Sasakawa Motoki, Simonenkov D.V., Sklyadneva T.K., Tolmachev G.N., Fofonov A.V. Issledovanie dinamiki kontsentratsii parnikovyh gazov na territorii Zapadnoj Sibiri // Optika atmosf. i okeana. 2019. V. 32, N 9. P. 777–785.
  25. Timohina A.V., Prokushkin A.S., Panov A.V., Kolosov R.A., Sidenko N.V., Lavrich J., Hajmann M. Mezhgodovaya izmenchivost' kontsentratsii dioksida ugleroda v atmosfere nad tsentral'noj chast'yu Sibiri (po dannym mezhdunarodnoj observatorii ZOTTO za 2009–2015 years) // Meteorol. i gidrol. 2018. N 5. P. 20–29.
  26. Friedlingstein P., Jones M.W., OSullivan M., Andrew R.M., Hauck J., Peters G.P., Peters W., Pongratz J., Sitch S., Le Quéré C., Bakker D.C.E., Canadell J.G., Ciais P., Jackson R.B., Anthoni P., Barbero L., Bastos A., Bastrikov V., Becker M., Bopp L., Buitenhuis E., Chandra N., Chevallier F., Chini L.P., Currie K.I., Feely R.A., Gehlen M., Gilfillan D., Gkritzalis T., Goll D.S., Gruber N., Gutekunst S., Harris I., Haverd V., Houghton R.A., Hurtt G., Ilyina T., Jain A.K., Joetzjer E., Kaplan J.O., Kato E., Goldewijk K.K., Korsbakken J.I., Landschützer P., Lauvset S.K., Lefèvre N., Lenton A., Lienert S., Lombardozzi D., Marland G., McGuire P.C., Melton J.R., Metzl N., Munro D.R., Nabel J.E.M.S., Nakaoka S.-I., Neill C., Omar A.M., Ono T., Peregon A., Pierrot D., Poulter B., Rehder G., Resplandy L., Robertson E., Rödenbeck C., Séférian R., Schwinger J., Smith N., Tans P.P., Tian H., Tilbrook B., Tubiello F.N., van der Werf G.R., Wiltshire A.J., Zaehle S. Global Carbon Budget 2019 // Earth Syst. Sci. Data. 2019. V. 11, N 4. P. 1783–1838.
  27. Krasnova A., Kukumägi M., Mander U., Torga R., Krasnov D., Noe S.M., Ostonen I., Püttsepp U., Killian H., Uri V., Lõhmus K., Sõber J., Soosaar K. Carbon exchange in a hemiboreal mixed forest in relation to tree species composition // Agric. For. Meteorol. 2019. V. 275. P. 11–23.
  28. Korkiakoski M., Tuovinen J.-P., Penttilä T., Sarkkola S., Ojanen P., Minkkinen K., Rainne J., Laurila T., Lohila A. Greenhouse gas and energy fluxes in a boreal peatland forest after clear-cutting // Biogeosciences. 2019. V. 16, N 19. P. 3703–3723.