Vol. 33, issue 04, article # 7

Razenkov I. A., Nadeev A. I., Zaitsev N. G., Gordeev E. V. Turbulent UV lidar BSE-5.. // Optika Atmosfery i Okeana. 2020. V. 33. No. 04. P. 289–297. DOI: 10.15372/AOO20200407 [in Russian].
Copy the reference to clipboard

Abstract:

The UV (355 nm) eye-safe turbulent lidar BSE-5 designed for atmospheric turbulence studies is described. Lidar works on the effect of backscattering enhancement, which occurs when a light wave propagates twice in a random medium. The design of the device is based on the receiving and transmitting afocal Mersen telescope, which provides thermomechanical stability during long-term operation of the device. To reduce the size of the telescope, the edges of the main mirror were cut off, which are not used during the lidar operation. Lidar tests were conducted at Tolmachevo airport, during which the turbulence condition was continuously monitored over the runway and over the aircraft parking. The lidar confidently recorded a turbulent wake for any aircraft type during takeoff and landing. It was found that the track width is 50 m wide, and the lifetime of the intense artificial turbulent zone over the airfield is 2–3 minutes.

Keywords:

atmospheric turbulence, artificial turbulence, backscatter enhancement effect, lidar

References:

  1. Gurvich A.S. Lidarnoe zondirovanie turbulentnosti na osnove effekta usileniya obratnogo rasseyaniya // Izv. RAN. Fiz. atmosf. i okeana. 2012. V. 48, N 6. P. 655–665.
  2. Gurvich A.S. Lidarnoe pozitsionirovanie oblastej povyshennoj turbulentnosti yasnogo neba // Izv. RAN. Fiz. atmosf. i okeana. 2014. V. 50, N 2. P. 166–174.
  3. Razenkov I.A. Turbulentnyj lidar. I. Konstruktsiya // Optika atmosf. i okeana. 2018. V. 31, N 1. P. 41–48; Rаzеnkov I.А. Turbulent lidar: I – Design // Atmos. Ocean. Opt. 2018. V. 31, N 3. P. 273–280.
  4. Razenkov I.A. Turbulentnyj lidar. II. Eksperiment // Optika atmosf. i okeana. 2018. V. 31, N 2. P. 81–89; Rаzеnkov I.А. Turbulent lidar: II – Experiment // Atmos. Ocean. Opt. 2018. V. 31, N 3. P. 281–289.
  5. Vinogradov A.G., Gurvich A.S., Kashkarov S.S., Kravtsov Yu.A., Tatarskij V.I. «Zakonomernost' uvelicheniya obratnogo rasseyaniya voln». Svidetel'stvo na otkrytie N 359. Prioritet otkrytiya: 25 august 1972 year v chasti teoreticheskogo obosnovaniya i 12 avgusta 1976 year v chasti eksperimental'nogo dokazatel'stva zakonomernosti. Gosudarstvennyj reestr otkrytij SSSR // Byull. izobretenij. 1989. N 21.
  6. Vinogradov A.G., Kravtsov Yu.A., Tatarskij V.I. Effekt usileniya obratnogo rasseyaniya na telah, pomeshchennyh v sredu so sluchajnymi neodnorodnostyami // Izv. vuzov. Radiofiz. 1973. V. 16, N 7. P. 1064–1070.
  7. Vorob'ev V.V. O primenimosti asimptoticheskih formul vosstanovleniya parametrov «opticheskoj» turbulentnosti iz dannyh impul'snogo lidarnogo zondirovaniya. I. Uravneniya // Optika atmosf. i okeana. 2016. V. 29, N 10. P. 870–875; Vorob’ev V.V. On the applicability of asymptotic formulas of retrieving “optical” turbulence parameters from pulse lidar sounding data: I – Equations // Atmos. Ocean. Opt. 2017. V. 30, N 2. P. 156–161.
  8. Razenkov I.A. Otsenka intensivnosti turbulentnosti iz lidarnyh dannyh // Optika atmosf. i okeana. 2020. V. 33. N 1. P. 32–40.
  9. Razenkov I.A., Banakh V.A., Gorgeev E.V. Lidar “BSE-4” for the atmospheric turbulence measurements // Proc. SPIE. 2018. URL: https://doi.org/10.1117/12.2505183 (last access: 9.11.2019).
  10. Mihel'son N.N. Opticheskie teleskopy. M.: Nauka, 1976. 512 p.
  11. Razenkov I.A. Optimizatsiya parametrov turbulentnogo lidara // Optika atmosf. i okeana. 2019. V. 32, N 1. P. 70–81; Razenkov I.A. Optimization of parameters of a turbulent lidar // Atmos. Ocean. Opt. 2019. V. 32, N 3. P. 349–360.
  12. Zajtsev N.G., Nadeev A.I. Programmno-apparatnyj kompleks mnogokanal'noj registratsii i obrabotki potoka odnoelektronnyh impul'sov // Zhurn. radioelektron. 2012. N 3. URL: http://jre.cplire.ru/jre/jan12/ 9/text.pdf (last access: 17.12.2019).
  13. Banah V.A., Razenkov I.A. Lidarnye izmereniya usileniya obratnogo rasseyaniya // Optika i spektroskopiya. 2016. V. 120, N 2. P. 339–348.
  14. Donovan D.P., Whiteway J.A., Carswell A.I. Correction for nonlinear photon-counting effects in lidar systems // Appl. Opt. 1993. V. 32, N 33. P. 6742–6753.
  15. Afanas'ev A.L., Banah V.A., Marakasov D.A. Monitoring vetrovoj obstanovki i indikatsiya sputnyh sledov v rajone vzletno-posadochnoj polosy aeroporta passivnym opticheskim metodom // Optika atmosf. i okeana. 2019. V. 32, N 5. P. 365–370; Afanasiev A.L., Banakh V.A., Marakasov D.A. Passive optical monitoring of wind conditions and indication of aircraft wakes near airport runways // Atmos. Ocean. Opt. 2019. V. 32, N 5. P. 506–510.
  16. Smaliho I.N., Banah V.A., Falits A.V., Suharev A.A. Eksperiment s tsel'yu izucheniya vihrevyh sledov samoletov, provedennyj na letnom pole aeroporta Tolmachevo v 2018 year. // Оптика атмосф. и океана. 2019. V. 32, N 8. P. 609–619.
  17. Azbukin A.A., Bogushevich A.Ya., Lukin V.P., Nosov V.V., Nosov E.V., Torgaev A.V. Apparatno-programmnyj kompleks dlya issledovaniya struktury polej turbulentnyh fluktuatsij temperatury i vetra // Optika atmosf. i okeana. 2018. V. 31, N 5. P. 378–384; Azbukin A.A., Bogushevich A.Ya., Lukin V.P., Nosov V.V., Nosov E.V., Torgaev A.V. Hardware-software complex for studying the structure of the fields of temperature and turbulent wind fluctuations // Atmos. Ocean. Opt. 2018. V. 31, N 5. P. 479–485.