Vol. 33, issue 04, article # 3

Timofeev Yu. M., Berezin I. A., Virolainen Ya. A., Poberovsky A. V., Makarova M. V., Polyakov A. V. Estimates of anthropogenic CO2 emissions for Moscow and St. Petersburg based on OCO-2 satellite measurements. // Optika Atmosfery i Okeana. 2020. V. 33. No. 04. P. 261–265. DOI: 10.15372/AOO20200403 [in Russian].
Copy the reference to clipboard

Abstract:

The rates of CO2 anthropogenic emissions are estimated for Saint Petersburg and Moscow megacities based on satellite CO2 measurements by OCO-2 instrument. The CO2 emission rates for Saint Petersburg amount to 80 and 74 t/km2 per day on March 1, 2016, and May 12, 2018, respectively. The CO2 emission rate for Moscow is estimated as 123, 179, and 186 t/km2 per day for August 25, 2018, June 22, 2018, and March 26, 2017, respectively. The comparison of our results with the estimates for other megacities has shown that the emission estimates for Saint Petersburg are close to those for Los Angeles and Berlin, and estimates for Moscow are close to those for London. The estimation errors are mainly caused by the anthropogenic contribution, which varies from 30% to ~ 90%.

Keywords:

satellite measurements, carbon dioxide, estimation of anthropogenic emissions, OCO-2 satellite, box model, CO2 temporal variations

References:

1. Mori K., Hirahara T., Ikegami M., Conway T.J. Technical Report of Global Analysis Method for Major Greenhouse Gases by the World Data Centre for Greenhouse Gases. GAW Report N 184. WMO, 2009. 29 p. 
2. Matsunaga T., Maksyutov S. (eds.). A Guidebook on the Use of Satellite Greenhouse Gases Observation Data to Evaluate and Improve Greenhouse Gas Emission Inventories. Satellite Observation Center, National Institute for Environmental Studies, Japan, 2018. 129 p. 
3. Wu L., Broquet G., Ciais P., Bellassen V., Vogel F., Chevallier F., Xueref-Remy I., Wang Y. What would dense atmospheric observation networks bring to the quantification of city CO2 emissions? // Atmos. Chem. Phys. 2016. V. 16, N 12. P. 7743–7771. 
4. Hopkins F.M., Ehleringer J.R., Bush S.E., Duren R.M., Miller C.E., Lai C.-T., Hsu Y.-K., Carranza V., Randerson J.T. Mitigation of methane emissions in cities: How new measurements and partnerships can contribute to emissions reduction strategies // Earth’s Future. 2016. V. 4, N 9. P. 408–425. 
5. Palmer P.I. Quantifying sources and sinks of trace gases using space-borne measurements: Current and future science // Phil. Trans. R. Soc. A. 2008. V. 366, N 1885. P. 4509–4528. 
6. Miller C.E., Crisp D., DeCola P.L., Olsen S.C., Randerson J.T., Michalak A.M., Alkhaled A., Rayner P., Jacob D.J., Suntharalingam P., Jones D.B.A., Denning A.S., Nicholls M.E., Doney S.C., Pawson S., Boesch H., Connor B.J., Fung I.Y, O’Brien D., Salawitch R.J., Sander S.P., Sen B., Tans P., Toon G.C., Wennberg P.O., Wofsy S.C., Yung Y.L., Law R.M. Precision requirements for space-based XCO2 data // J. Geophys. Res. 2007. V. 112, N D10314. DOI: 10.1029/2006JD007659. 
7. Deng F., Jones D.B.A., Henze D.K., Bousserez N., Bowman K.W., Fisher J.B., Nassar R., O’Dell C., Wunch D., Wennberg P.O., Kort E.A., Wofsy S.C., Blumenstock T., Deutscher N.M., Griffith D.W.T., Hase F., Heikkinen P., Sherlock V., Strong K., Sussmann R., Warneke T. Inferring regional sources and sinks of atmospheric CO2 from GOSAT XCO2 data // Atmos. Chem. Phys. 2014. V. 14, N 7. P. 3703–3727. 
8. Feng L., Palmer P.I., Bösch H., Parker R.J., Webb A.J., Correia C.S.C., Deutscher N.M., Domingues L.G., Feist D.G., Gatti L.V., Gloor E., Hase F., Kivi R., Liu Y., Miller J.B., Morino I., Sussmann R., Strong K., Uchino O., Wang J., Zahn A. Consistent regional fluxes of CH4 and CO2 inferred from GOSAT proxy XCН: XCO2 retrievals, 2010–2014 // Atmos. Chem. Phys. 2017. V. 17, N 7. P. 4781–4797. 
9. Nassar R., Hill T.G., McLinden C.A., Wunch D., Jones D.B.A., Crisp D. Quantifying CO2 emissions from individual power plants from space // Geoph. Res. Lett. 2017. V. 44, N 19. P. 10.045–10.053. 
10. Frankenberg C., Pollock R., Lee R.A.M., Rosenberg R., Blavier J.-F., Crisp D., O'Dell C.W., Osterman G.B., Roehl C., Wennberg P.O., Wunch D. The Orbiting Carbon Observatory (OCO-2): Spectrometer performance evaluation using pre-launch direct sun measurements // Atmos. Meas. Tech. 2015. V. 8, N 1. P. 301–313. 
11. Wunch D., Wennberg P.O., Osterman G., Fisher B., Naylor B., Roehl C.M., O'Del C., Mandrake L., Viatte C., Kiel M., Griffith D.V.T., Deutscher N.M., Velazco V.A., Notholt J., Warneke T., Petri C., Martine De Maziere, Sha M.K., Sussmann R., Rettinger M., Pollard D., Robinson J., Morino I., Uchino O., Hase F., Blumenstock T., Feist D.G., Arnold S.G., Strong K., Mendonca J., Kivi R., Heikkinen P., Iraci L., Podolske J., Hillyard P.W., Kawakami Sh., Dubey M.K., Parker H.A., Sepulveda E., García O.E., Te Y., Jeseck P., Gunson M.R., Crisp D., Eldering A. Comparisons of the Orbiting Carbon Observatory-2 (OCO-2) XCO2 measurements with TCCON // Atmos. Meas. Tech. 2017. V. 10, N 6. P. 2209–2238. 
12. Enting I.G. Inverse problems in Atmospheric Constituent Transport. New York: Cambridge University Press, 2002. 410 p. 
13. Barthlott S., Schneider M., Hase F., Wiegele A., Christner E., González Y., Blumenstock T., Dohe S., García O.E., Sepúlveda E., Strong K., Mendonca J., Weaver D., Palm M., Deutscher N.M., Warneke T., Notholt J., Lejeune B., Mahieu E., Jones N., Grif-fith D.W.T., Velazco V.A., Smale D., Robinson J., Kivi R., Heikkinen P., Raffalski U. Using XCO2 retrievals for assessing the long-term consistency of NDACC/FTIR data sets // Atmos. Meas. Tech. 2015. V. 8, N 3. P. 1555–1573. 
14. Virolainen Y.A., Timofeyev Y.M., Kostsov V.S., Ionov D.V., Kalinnikov V.V., Makarova M.V., Poberovsky A.V., Zaitsev N.A., Imhasin H.H., Polyakov A.V., Schneider M., Hase F., Barthlott S., Blumenstock T. Quality assessment of integrated water vapour measurements at St. Petersburg site, Russia: FTIR vs. MW and GPS techniques // Atmos. Meas. Tech. 2017. V. 10, N 11. P. 4521–4536. 
15. Makarova M.V., Arabadzhyan D.K., Foka S.Ch., Paramonova N.N., PoberovskiA.V., Timofeev Yu.M., Pankratova N.V., Rakitin V.S. Otsenka nochnyh emissij uglerodosoderzhashchih gazov v prigorodah Sankt-Peterburga // Meteorol. i gidrol. 2018. N 7. P. 36–44. 
16. O’Shea S., Allen G., Fleming Z., Bauguitte S., Percival J.C., Gallagher M., Lee J., Helfter C., Nemitz E. Area fluxes of carbon dioxide, methane, and carbon monoxide derived from airborne measurements around Greater London: A case study during summer 2012 // J. Geophys. Res.: Atmos. 2014. V. 119, N 8. P. 4940–4952. 
17. Font A., Grimmond C.S., Kotthaus S., Morguí J.A., Stockdale C., O’Connor E., Priestman M., Barratt B. Daytime CO2 urban surface fluxes from airborne measurements, eddy-covariance observations and emissions inventory in Greater London // Environ. Pollut. 2015. V. 196, N 1. P. 98–106.
18. Kort E.A., Frankenberg C., Miller C.E., Oda T. Space-based observations of megacity carbon dioxide // Geophys. Res. Lett. 2012. V. 39, N 17. P. L17806. 
19. Kumar M.K., Nagendra S.M. Quantification of anthropogenic CO2 emissions in a tropical urban environment // Atmos. Environ. 2016. V. 125, N 1. P. 272–282. 
20. Hase F., Frey M., Blumenstock T., Groß J., Kiel M., Kohlhepp R., Mengistu Tsidu G., Schäfer K., Sha K.M., Orphal J. Use of portable FTIR spectrometers for detecting greenhouse gas emissions of the major city Berlin // Atmos. Meas. Tech. 2015. V. 8, N 7. P. 305–3068. 
21. Newman S., Jeong S., Fischer M.L., Xu X., Haman C.L., Lefer B., Alvarez S., Rappenglueck B., Kort E.A., Andrews A.E., Peischl J., Gurney K.R., Miller C.E., Yung Y.L. Diurnal tracking of anthropogenic CO2 emissions in the Los Angeles basin megacity during spring 2010 // Atmos. Chem. Phys. 2013. V. 13, N 8. P. 4359–4372. 
22. SerebritskiI.A. Doklad ob ekologicheskoj situatsii v Sankt-Peterburge v 2017 year. SPb.: Sezam-print, 2018. 158 p.





     
  1.  

  2.  




  3.  
  4.  


  5.