Vol. 33, issue 03, article # 12

Yagnyatinskiу D. A., Fedoseуev V. N. Numerical simulations of the monomorph deformable mirror in ANSYS software. // Optika Atmosfery i Okeana. 2020. V. 33. No. 03. P. 220–226. DOI: 10.15372/AOO20200312 [in Russian].
Copy the reference to clipboard

Abstract:

Based on the numerical simulations in ANSYS software the design of the monomorph (unimorph) deformable mirror has been developed. The control electrodes pattern, which allows reproducing aberrations up to 5th order (the first 21 Zernike modes) on the light aperture with high fidelity, was chosen. All important characteristics of the monomorph mirror were calculated: electrodes influence functions, reproduction errors of the given aberrations, gravitational sag of the mirror, mirror surface deformation due to ambient temperature changing, thermal deformations and thermal field due to the incident laser beam, and natural frequencies of the mirror. The results show a possibility of the effective use of this mirror as an element of adaptive optics systems.

Keywords:

monomorph deformable mirror, numerical simulations, ANSYS software, aberrations, influence functions, thermal deformations, natural frequencies

References:

  1. Ellis E.M. Low-cost Bimorph Adaptive Mirrors: Ph.D. dissertation. Imperial College of Science, Technology and Medicine – University of London, 1999. 170 p.
  2. Roddier F. Adaptive Optics in Astronomy. Cambridge: Cambridge University Press, 1999. 441 р.
  3. Tokovinin A.A. Lektsii po adaptivnoj optike. URL: http://www.ctio.noao.edu/~atokovin/tutorial/ (data obrashcheniya: 22.12.2019).
  4. Cousty R., Antonini T., Aubry M., Krol H., Moreau A. Monomorph deformable mirrors: From ground-based facilities to space telescopes // Proc. SPIE. 2016. V. 10562. P. 1056231-9.
  5. Verpoort S., Rausch P., Wittrock U. Novel unimorph deformable mirror for space applications // Proc. SPIE.  2017. V. 10564. P. 1056414.
  6. Alaluf D., Bastaits R., Wang K., Horodinca M., Martic G., Mokrani B., Preumont A. Unimorph mirror for adaptive optics in space telescopes // Appl. Opt. 2018. V. 57, N 14. P. 3629–3638.
  7. Jones S.M., Olivier S., Chen D., Joeres S., Sadda S., Zawadzki R.J., Werner J.S., Miller D.T. Adaptive optics ophthalmologic systems using dual deformable mirrors // Proc. SPIE. 2007. V. 6467. P. 6470Н-1–14.
  8. Long C.S., Loveday P.W., Forbes A. A piezoelectric deformable mirror for intra-cavity laser adaptive optics // Proc. SPIE. 2008. V. 6930. P. 69300Y-1–12.
  9. Verpoort S., Rausch P., Wittrock U. Characterization of a miniaturized unimorph deformable mirror for high power cw-solid state laser // Proc. SPIE. 2012. V. 8253. P. 825309-1–12.
  10. Aleksandrov A.G., Zavalova V.E., Kudryashov A.V., Rukosuev A.L., Samarkin V.V. Adaptive correction of a high-power titanium-sapphire laser radiation // J. Appl. Spectrosc. 2005. V. 72, N 5. P. 744–750.
  11. Kopylov E.A., Lukin V.P. Staticheskie harakteristiki bimorfnogo zerkala DM2-100-31 i vozmozhnost' ego primeneniya v adaptivnoj opticheskoj sisteme Bol'shogo solnechnogo va-kuumnogo teleskopa // Optika atmosf. i okeana. 2010. V. 23, N 12. P. 1111–1113.
  12. Ma J., Liu Y., Hu Y., Xu C., Li B., Chu J. Low-cost unimorph deformable mirror with high actuator count for astronomical adaptive optics // Opt. Eng. 2013. V. 52, N 1. P. 016602.
  13. Rausch P., Verpoort S., Wittrock U. Unimorph deformable mirror for space telescopes: Environmental testing // Opt. Express. 2016. V. 24, N 2. P. 1528–1542.
  14. Alaluf D. Piezoelectric mirrors for adaptive optics in space telescopes: Ph.D. thesis. Université Libre de Bruxelles, Active Structures Laboratory, 2016. 151 p.
  15. Sobolev A.S., Cherezova T.Yu., Kudryashov A.V. Analiticheskaya i chislennaya modeli gibkogo bimorfnogo zerkala // Optika atmosf. i okeana. 2005. V. 18, N 3. P. 277–281.
  16. Ning Y., Jiang W., Ling N., Rao C. Response function calculation and sensitivity comparison analysis of various bimorph deformable mirrors // Opt. Express. 2007. V. 15, N 19. P. 12030–12038.
  17. Verpoort S., Wittrock U. Actuator patterns for unimorph and bimorph deformable mirrors // Appl. Opt. 2010. V. 49, N 31. P. G37–G46.
  18. Piefort V. Finite element modelling of piezoelectric active structures: Ph.D. dissertation. Université Libre de Bruxelles, 2001. 154 p.
  19. URL: https://www.academia.edu/16970000/MESH_ QUALITY _ AND _ ADVENCED _ TOPICS _ ANSYS _ WORKBENCH_16.0 (last access: 22.12.2019).
  20. Kudryashov A., Shmalhauzen V. Semipassive bimorph flexible mirrors for atmospheric adaptive optics applications // Opt. Eng. 1996. V. 35, N 11. P. 3064–3073.
  21. Nikiforov V.G. Mnogoslojnye p'ezoelektricheskie aktyuatory. Teoriya i praktika // Elpa. 68 p.
  22. Piezoelectric Ceramics: Principles and Applications. 2nd. ed. APC International, 2011. 114 p.
  23. Haritonov V.V. Teplofizika lazernyh zerkal. M.: Izd. MIFI, 1993. 152 p.
  24. Ivan I.A., Rakotondrabe M., Agnus J., Bourquin R., Chaillet N., Lutz P., Poncot J.C., Duffait R., Bauer D. Comparative material study between PZT ceramic and newer crystalline PMN-PT and PZN-PT materials for composite bimorph actuators // Rev. Adv. Mater. Sci. 2010. N 24. P. 1–9.