Vol. 33, issue 01, article # 8

Kruchenitskii G. M., Statnikov K. A. Seasonal and long-term variability of the zonally averaged fields of TOC. // Optika Atmosfery i Okeana. 2020. V. 33. No. 01. P. 56–61. DOI: 10.15372/AOO20200108 [in Russian].
Copy the reference to clipboard

Abstract:

Zonal averaged fields of seasonal and long-term variability of the total ozone content (TOC), including polar regions, are investigated. It is shown that the long-term variability of all these series (with a spatial resolution of 3° latitude) is reduced to a parametric resonance with the lowest of the tidal oscillation frequencies (period of 18.6 years). After excluding this effect, series trends for all latitudinal zones become vanishingly small (having different signs) and statistically insignificant. The results are completely incompatible with the anthropogenic version of ozone depletion. It is stated that the phenomenon of parametric resonance is also observed in the lithosphere as applied to global tectonic activity.

Keywords:

ozone, seasonal and long-term variability, trends, tidal fluctuations, parametric resonance

Figures:

References:

  1. Zvyagintsev A.M., Kruchenitskij G.M. Ozonovyj krizis: 20 let spustya. Rossiya v okruzhayushchem mire: 2005 (Analit. ezhegodnik) / pod obshch. red. N.N. Marfenina, S.A. Stepanova. M.: Modus-K – Eterna, 2006. P. 125–145.
  1. WMO, Scientific Assessment of Ozone Depletion: 2018, Global Ozone Research and Monitoring Project. Report N 58. WMO, 2019. 278 p.
  2. Mazurin I.M., Korolev A.F., Utkin E.F., Gerasimov R.L. Global'naya prirodoohrannaya gipoteza, sozdavshaya global'nyj krizis v vybore hladagentov // Prostranstvo i vremya. 2015. V. 3, N 21. P. 313–319.
  3. Jet Propulsion Laboratory. Chemical Kinetics and Photochemical Data for Use in Stratospheric Modeling // Evaluation 9, JPL Publication 90-1.
  4. Zvyagintsev A.M., Zuev V.V., Kruchenitskij G.M., Skorobogatyj T.V. O vklade geterofaznyh protsessov v formirovanie vesennej ozonovoj anomalii v Antarktide // Issledovanie Zemli iz kosmosa. 2002. N 3. P. 1–6.
  5. Arnol'd V.I. Matematicheskie metody klassicheskoj mehaniki. M.: Nauka, 1979. P. 307–308.
  6. URL: http://toms.gsfc.nasa.gov/pub/omi/data/ozone/ (last access: 14.12.2018)
  7. Hudson D.J. Lectures on elementary statistics and probability. Geneva, 1964. 242 p.
  8. Marchuk G.I., Kagan B.A. Dinamika okeanskih prilivov. L.: Gidrometeoizdat, 1982. 359 p.
  9. Statnikov K., Kruchenitsky G. Statistical modelling of global tectonic activity and some physical consequences of its results // J. Systemics, Cybern. Inf. 2015. V. 13, N 1. P. 51–55.
  10. Landau L.D., Lifshits E.M. Mehanika. M.: Fizmatgiz, 1958. P. 103–109.
  11. Pawson S., Steinbrecht W., Charlton-Perez A.J., Fujiwara M., Karpechko A.Yu., Petropavlovskikh I., Urban J., Weber M. Update on Global Ozone: Past, Present, and Future // WMO, Scientific Assessment of Ozone Depletion: 2014. Report N 55. Geneva, 2014.
  12. Kruchenitskij G.M., Bekoryukov V.I., Voloshchuk V.M., Zvyagintsev A.M., Kadygrov N.E., Kadygrova T.V., Perov S.P. O vklade dinamicheskih protsessov v formirovanie anomal'no nizkih znachenij obshchego soderzhaniya ozona v Severnom polusharii // Optika atmosf. i okeana. 1996. V. 9, N 9. P. 1233–1242.
  13. Zuev V.V. Transformatsiya ozonovogo sloya zemnoj atmosfery – tehnogennaya katastrofa ili prirodnoe yavlenie? // Optika atmosf. i okeana. 1996. V. 9, N 9. P. 1171–1183.
  14. Maduro R., Schauerhammer R. The Holes in the Ozone Scare: The Scientific Evidence that the Sky isn't Falling // Paris: Alcuin, 1992. 256 p.
  15. Ellsaesser H.W. Why the U.S. should withdraw from the Montreal Protocol // 21st Century Science Tech. 1996. Spring. P. 51–53.