Vol. 33, issue 01, article # 7
Copy the reference to clipboard
Abstract:
In September 2002, the sudden stratospheric warming (SSW) was observed over the Antarctic as a result of the polar vortex splitting. The unusually early breakdown of the Antarctic polar vortex in spring 2002 was caused by the increased activity of vertically propagating planetary waves. The dynamics of the south polar vortex during SSW of 2002 is investigated. An unusual temperature decrease in the lower subtropical stratosphere, which contributed to a decrease in the stratospheric meridional temperature gradient is considered a possible cause of the weakening of the polar vortex, which preceded its splitting under the influence of planetary waves.
Keywords:
sudden stratospheric warming, Antarctic polar vortex, lower subtropical stratosphere
References:
- Limpasuvan V., Thompson D.W.J., Hartmann D.L. The life cycle of the Northern Hemisphere sudden stratospheric warmings // J. Climate. 2004. V. 17, N 13. P. 2584–2596.
3. Flury T., Hocke K., Haefele A., Kämpfer N., Lehmann R. Ozone depletion, water vapor increase, and PSC generation at midlatitudes by the 2008 major stratospheric warming // J. Geophys. Res. D. 2009. V. 114, N 18. P. 18302.
4. Abridged final report of the seventh session of the commission for atmospheric sciences, Manila, 27 February – 10 March 1978. Geneva: WMO, 1978. Report N 509. 113 p.
5. Ageyeva V.Yu., Gruzdev A.N., Elokhov A.S., Mokhov I.I., Zueva N.E. Sudden stratospheric warmings: Statistical characteristics and influence on NO2 and O3 total contents // Izv. Atmos. Oceanic Phys. 2017. V. 53, N 5. P. 477–486.
6. Charlton A.J., O’Neill A., Lahoz W.A., Berrisford P. The splitting of the stratospheric polar vortex in the Southern Hemisphere, September 2002: Dynamical evolution // J. Atmos. Sci. 2005. V. 62, N 3. P. 590–602.
7. Feng W., Chipperfield M.P., Roscoe H.K., Remedios J.J., Waterfall A.M., Stiller G.P., Glatthor N., Höpfner M., Wang D.-Y. Three-dimensional model study of the Antarctic ozone hole in 2002 and comparison with 2000 // J. Atmos. Sci. 2005. V. 62, N 3. P. 822–837.
8. Hoppel K., Bevilacqua R., Allen D., Nedoluha G., Randall C. POAM III observations of the anomalous 2002 Antarctic ozone hole // Geophys. Res. Lett. 2003. V. 30, N 7. P. 1394.
9. Kondragunta S., Flynn L.E., Neuendorffer A., Miller A.J., Long C., Nagatani R., Zhou S., Beck T., Beach E., McPeters R., Stolarski R., Bhartia P.K., DeLand M.T., Huang L.-K. Vertical structure of the anomalous 2002 Antarctic ozone hole // J. Atmos. Sci. 2005. V. 62, N 3. P. 801–811.
10. Stolarski R.S., McPeters R.D., Newman P.A. The ozone hole of 2002 as measured by TOMS // J. Atmos. Sci. 2005. V. 62, N 3. P. 716–720.
11. Zuev V.V., Savelieva E. The cause of the spring strengthening of the Antarctic polar vortex // Dynam. Atmos. Oceans. 2019. V. 87. P. 101097.
12. Zuev V.V., Savelieva E. The cause of the strengthening of the Antarctic polar vortex during October–November periods // J. Atmos. Sol.-Terr. Phys. 2019. V. 190. P. 1–5.
13. Stenchikov G., Robock A., Ramaswamy V., Schwarzkopf M.D., Hamilton K., Ramachandran S. Arctic Oscillation response to the 1991 Mount Pinatubo eruption: Effects of volcanic aerosols and ozone depletion // J. Geophys. Res. D. 2002. V. 107, N 24. P. ACL28.
14. Kirchner I., Stenchikov G.L., Graf H.-F., Robock A., Antuña J.C. Climate model simulation of winter warming and summer cooling following the 1991 Mount Pinatubo volcanic eruption // J. Geophys. Res. D. 1999. V. 104, N 16. P. 19039–19055.
15. Newman P.A. Chemistry and dynamics of the Antarctic ozone hole // The Stratosphere: Dynamics, Transport, and Chemistry. Geophys. Monograph Ser. 2010. V. 190. P. 157–171.
16. Solomon S. Stratospheric ozone depletion: A review of concepts and history // Rev. Geophys. 1999. V. 37, N 3. P. 275–316.
17. Dee D.P., Uppala S.M., Simmons A.J., Berrisford P., Poli P., Kobayashi S., Andrae U., Balmaseda M.A., Balsamo G., Bauer P., Bechtold P., Beljaars A.C.M., van de Berg L., Bidlot J., Bormann N., Delsol C., Dragani R., Fuentes M., Geer A.J., Haimberger L., Healy S.B., Hersbach H., Hólm E.V., Isaksen L., Kållberg P., Köhler M., Matricardi M., McNally A.P., Monge-Sanz B.M., Morcrette J.-J., Park B.-K., Peubey C., de Rosnay P., Tavolato C., Thépaut J.-N., Vitart F. The ERA-Interim reanalysis: Configuration and performance of the data assimilation system // Q. J. Roy. Meteor. Soc. 2011. V. 137, N 656. P. 553–597.
18. Goddard Space Flight Center (GSFC). NASA’s Ozone Hole Watch Web Site (online database) [Electronic resource] URL: http://ozonewatch.gsfc.nasa.gov/SH.html (last access: 20.07.2019).
19. Finlayson-Pitts B.J., Pitts J.N. Chemistry of the Upper and Lower Atmosphere: Theory, Experiments, and Applications. California: Academic Press, 2000. 969 p.
20. Solomon S., Garcia R.R., Rowland F.S., Wuebbles D.J. On the depletion of Antarctic ozone // Nature. 1986. V. 321. P. 755–758.
21. Newman P.A., Nash E.R. The unusual Southern Hemisphere stratosphere winter of 2002 // J. Atmos. Sci. 2005. V. 62, N 3. P. 614–628.
22. Polvani L.M., Waugh D.W. Upward wave activity flux as a precursor to extreme stratospheric events and subsequent anomalous surface weather regimes // J. Climate. 2004. V. 17, N 18. P. 3548–3554.
23. Matthias V., Dörnbrack A., Stober G. The extraordinarily strong and cold polar vortex in the early northern winter 2015/2016 // Geophys. Res. Lett. 2016. V. 43, N 23. P. 12287–12294.
24. Manney G.L., Sabutis J.L. Development of the polar vortex in the 1999–2000 Arctic winter stratosphere // Geophys. Res. Lett. 2000. V. 27, N 17. P. 2589–2592.