Vol. 32, issue 10, article # 6

Lipatov E. I., Tarasenko V. F., Erofeev M. V., Ripenko V. S., Shulepov M. A. Vavilov–Cherenkov radiation in the region 200–300 nm in the Earth¢s atmosphere. // Optika Atmosfery i Okeana. 2019. V. 32. No. 10. P. 841–843. DOI: 10.15372/AOO20191006 [in Russian].
Copy the reference to clipboard

Abstract:

The results of studies of the emission spectra of the Earth’s atmosphere in the ultraviolet (UV) and visible spectral regions are presented. The input window of the spectrometer was directed to the Sun or located at different angles to the axis passing through the center of the solar disk. For the first time, a Vavilov–Cherenkov (VCh) emission spectrum was recorded with a standard spectrometer in the region 200–300 nm. The threshold energy of electrons for the occurrence of VCh emission in air and the maximum angle of propagation of VCh emission with respect to the direction of electron motion are calculated. It is assumed that the VCh emission occurs when high-energy particles of the solar wind are braked in the Earth’s atmosphere.

Keywords:

Vavilov–Cherenkov (VCh) radiation, Earth's atmosphere, solar wind, ultraviolet radiation

References:

  1. Handbook of geophysics and space environments / S.L. Valley (ed.). New York: McGraw-Hill, 1965. 691 р.
  2. Akasofu S.I., Chapman S. Solar-terrestrial physics. Oxford: The Clarendon press, 1972. 891 p.
  3. Chukin V.V. Issledovanie atmosfery metodom elektromagnitnogo prosvechivaniya. SPb.: Izd-vo RGGMU, 2004. 107 p.
  4. Shefov N.N., Semenov A.I., Khomich V.Yu. Izluchenie verkhnej atmosfery – indikator ee struktury i dinamiki. M.: GEOS, 2006. 740 p.
  5. Kolomiets S.M. Zondirovanie ionosfery s ispol'zovaniem iskusstvennykh sputnikov Zemli s passivnym otvetom [Elektronnyj resurs] // Issledovaniya v oblasti estestvennykh nauk. 2014. N 11. URL: http:// science.snauka.ru/2014/11/8498 (data obrashcheniya: 7.02.2019).
  6. Таshchilin М.А., Мikhalev А.V. Vesennyaya osobennost' sezonnogo khoda prizemnoj ul'trafioletovoj radiatsii v nekotorykh regionakh Rossii // Optika atmosf. i okeana. 2010. V. 23, N 3. P. 205–210; Таshchilin М.А., Мikhalev А.V. Springtime feature of the seasonal behavior of near-ground ultraviolet radiation in certain regions of Russia // Atmos. Ocean. Opt. 2010. V. 23, N 4. P. 303–308.
  7. Chubarovа N.Е., Тimofeev Yu.М., Virolainen Ya.А., Polyakov А.V. Otsenki UF-indeksov v periody ponizhennogo soderzhaniya ozona nad Sibir'yu winter – spring 2016 year. // Optika atmosf. i okeana. 2018. V. 31, N 11. P. 902–905; Chubarovа N.Е., Тimofeev Yu.М., Virolainen Ya.А., Polyakov А.V. Estimates of UV indices during the periods of reduced ozone content over Siberia in winter – spring 2016 // Atmos. Ocean. Opt. 2019. V. 32, N 2. P. 177–179.
  8. Zrelov V.P. Izluchenie Vavilova–Cherenkova i ego primenenie v fizike vysokikh energij. V. 1. M.: Atomizdat, 1968. 274 p.
  9. Landau L.D., Lifshits E.M.  Teoreticheskaya fizika. V. 8. M.: Nauka, 1982. 621 p.
  10. Sorokin D.A., Burachenko A.G., Beloplotov D.V., Tarasenko V.F., Baksht E.Kh., Lipatov E.I., Lomaev M.I. Luminescence of crystals excited by a runaway electron beam and by excilamp radiation with a peak wavelength of 222 nm // J. Appl. Phys. 2017. V. 122. P. 093304.
  11. Tsunesada Y., Katsuya R., Mitsumori Y., Nakayama K., Kakimoto F., Tokuno H., Tajima N., Miranda P., Salinas J., Tavera W. New air Cherenkov light detectors to study mass composition of cosmic rays with energies above knee region // Nucl. Instrum. Methods Phys. Res. A. 2014. V. 763. P. 320–328.
  12. Clem J.M., Niessen P., Stoyanov S. Response of IceTop tanks to low-energy particles // Proc. 30th Intern. Cosmic Ray Conf. Mexico City, Mexico. 2008. V. 1(SH). P. 237–240.
  13. De Vries K.D., van den Berg A.M., Scholten O., Werner K. Coherent Cherenkov radiation from cosmic-ray-induced air showers // Phys. Rev. Lett. 2011. V. 107. P. 061101.
  14. Bagnato F., Romano A., Buratti P., Doria A., Gabellieri L., Giovenale E., Rabinski M. Triple Cherenkov probe measurements on FTU: Calibration and runaway energy spectra // Plasma Phys. Control. Fusion. 2018. V. 60, N 11. P. 115010.
  15. Lipatov E.I., Genin D.E., Grigor’ev D.V., Tarasenko V.F., Burachenko A.G., Baksht E.Kh., Beloplotov D.V. Applied optical properties of diamond // AIP Conf. Proc. 2019. V. 2069. P. 040007(1–8).
  16. Tarasenko V.F., Lomaev M.I., Baksht E.Kh., Beloplotov D.V., Burachenko A.G., Sorokin D.A., Lipatov E.I. Spectral and amplitude-time characteristics of crystals excited by a runaway electron beam // Matter Radiat. Extremes. 2019. V. 4. P. 037401.
  17. Baksht E.Kh., Vukolov A.V., Erofeev M.V., Naumenko G.A., Potylitsyn A.P., Tarasenko V.F., Burachenko A.G., Shevelev M.V. Izluchenie Vavilova–Cherenkova v vidimoj i UF-oblastyakh spektra pri prokhozhdenii elektronov s energiej 6 MeV cherez kvartsevuyu plastinku // Pis'ma v ZhETF. 2019. V. 109, N 9. P. 584–588.