Vol. 32, issue 09, article # 6

Matvienko G. G., Bаbushkin P. A., Bobrovnikov S. M., Borovoy A. G., Bochkovskii D. A., Galileiskii V. P., Grishin A. I., Dolgii S. I., Elizarov A. I., Kokarev D. V., Konoshonkin A. V., Kryuchkov A. V., Kustova N. V., Nevzorov A. V., Marichev V. N., Morozov A. M., Oshlakov V. K., Romanovskii O. A., Sukhanov A. Ya., Trifonov D. A., Yakovlev S. V., Sadovnikov S. A., Nevzorov A. A., Kharchenko O. V. Laser and optical sensing of atmosphere. // Optika Atmosfery i Okeana. 2019. V. 32. No. 09. P. . DOI: 10.15372/AOO20190906 [in Russian].
Copy the reference to clipboard

Abstract:

An analysis is made of the development of lidar and searchlight methods of atmospheric research carried out in recent years at the Institute of Atmospheric Optics. A description is given of using the temperature dependence of the intensity ratio of the optimal combination of temperature-sensitive lines of the rotational Raman spectrum on nitrogen and oxygen molecules for the lidar determination of temperature profiles. The application of the method of differential absorption and scattering to estimate the content of gas impurities in the UV and near and middle IR ranges is described. The possibility of placing a differential absorption lidar on a space platform to determine the total content of methane and carbon dioxide in the atmosphere is analyzed. The conditions for the detection of polar and silvery clouds in the atmosphere above Tomsk are studied. The lidar-optical characteristics of cirrus clouds consisting of ice crystal aggregates are also determined. The use of postfilation beams for wide-spectrum sensing of an aerosol atmosphere has been founded. The results of searchlight sensing of atmospheric formations that create the phenomenon of mirror reflection are given.

Figures:

References:

  1. Lidar: range-resolved optical remote sensing of the atmosphere / C. Weitkamp (ed.). Foreword by Herbert Walther. Springer series in optical sciences. 2005. V. 102. 456 p.
  2. Prozhektornyj luch v atmosfere / pod red. G.V. Rozenberga. M.: Izd-vo AN SSSR, 1960. 244 p.
  3. Bobrovnikov S.M., Matvienko G.G., Romanovskij O.A., Serikov I.B., Suhanov A.Ya. Lidarnyj spektroskopicheskij gazoanaliz atmosfery. Tomsk: Izd-vo IOA SO RAN, 2014. 510 p.
  4. Lidarnyj monitoring oblachnyh i aerozol'nyh polej, malyh gazovyh sostavlyayushchih i meteoparametrov atmosfery / pod red. G.G. Matvienko. Tomsk: Izd-vo IOA SO RAN, 2015. 450 p.
  5. Matvienko G.G., Balin Yu.S., Bobrovnikov S.M., Romanovskij O.A., Kohanenko G.P., Samojlova S.V., Penner I.E., Gorlov E.V., Zharkov V.I., Sadovnikov S.A., Harchenko O.V., YAkovlev S.V., Bazhenov O.E., Burlakov V.D., Dolgij S.I., Makeev A.P., Nevzorov A.A., Nevzorov A.V. Sibirskaya lidarnaya stantsiya: apparatura i rezul'taty. Tomsk: Izd-vo IOA SO RAN, 2016. 440 p.
  6. Serikov I., Bobrovnikov S. Atmospheric temperature profiling with pure rotational Raman lidars / L. Fiorani, V. Mitev (eds.). Recents Advances in Atmospheric Lidars, INOE, 2010, P. 149–216.
  7. Vasil'ev B.I., Mannun U.M. IK-lidary differentsial'nogo pogloshcheniya dlya ekologicheskogo monitoringa okruzhayushchej sredy // Kvant. elektron. 2006. V. 36, N 9. P. 801.
  8. Burlakov V.D., Dolgij S.I., Nevzorov A.A., Nevzorov A.V., Romanovskij O.A. Vosstanovlenie profilej vertikal'nogo raspredeleniya kontsentratsii ozona iz dannyh lidarnogo zondirovaniya // Izv. vuzov. Fizika. 2015. V. 58, N 8. P. 70–76.
  9. Romanovskij O.A., Sadovnikov S.A., Harchenko O.V., YAkovlev S.V. Shirokodiapazonnyj IK-lidar dlya gazoanaliza atmosfery // Zhurnal prikladnoj spektroskopii. 2018. V. 85, N 3. P. 448–453.
  10. Romanovskii O.A., Sadovnikov S.A., Kharchenko O.V., Shumsky V.K., Yakovlev S.V. Optical parametric oscillators in lidar sounding of trace atmospheric gases in the 3–4 mm spectral range // Optical Memory and Neural Networks (Information Optics). 2016. V. 25, N 2. P. 88–94.
  11. Matvienko G.G., Romanovskii O.A., Sadovnikov S.A., Sukhanov A.Ya., Kharchenko O.V., Yakovlev S.V. Study of the possibility of using a parametric-light-generator-based laser system for lidar probing of the composition of the atmosphere // Journal of Optical Technology (A Translation of Opticheskii Zhurnal). 2017. V. 84, N 6. P. 408–414.
  12. Arshinov M.Yu., Belan B.D., Davydov D.K., Inouje G., Maksyutov SH., Machida T., Fofonov A.V. Vertikal'noe raspredelenie parnikovyh gazov nad Zapadnoj Sibir'yu po dannym mnogoletnih izmerenij // Optika atmosf. i okeana. 2009. V. 22, N 5. P. 457–464.
  13. Аршинов М.Ю., Белан Б.Д., Давыдов Д.К., Креков Г.М., Фофонов А.В., Бабченко С.В., Inoue G., Machida T., Maksutov Sh., Sasakawa M., Shimoyama K. Динамика вертикального распределение парниковых газов в атмосфере // Optika atmosf. i okeana. 2012. V. 25, N 12. P. 1051–1061.
  14. Izmenenie klimata, 2014. Obobshchayushchij doklad. Rezyume dlya politikov. Rezhim dostupa: https://www. ipcc.ch/site/assets/uploads/2018/02/AR5_SYR_FINAL_SPM_ru.pdf (data obrashcheniya: 07.02.2019).
  15. Allen M.R., Dube O.P., Solecki W., Aragón-Durand F., Cramer W., Humphreys S., Kainuma M., Kala J., Mahowald N., Mulugetta Y., Perez R., Wairiu M., Zickfeld K., 2018: Framing and Context. In: Global Warming of 1.5 °C. An IPCC Special Report on the impacts of global warming of 1.5 °C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty / V. Masson-Delmotte, P. Zhai, H.-O. Pörtner, D. Roberts, J. Skea, P.R. Shukla, A. Pirani, W. Moufouma-Okia, C. Péan, R. Pidcock, S. Connors, J.B.R. Matthews, Y. Chen, X. Zhou, M.I. Gomis, E. Lonnoy, T. Maycock, M. Tignor, T. Waterfield (eds.). In Press.
  16. Otsenochnyj doklad ob izmeneniyah klimata i ih posledstviyah na territorii Rossijskoj Federatsii. V. 1. Izmeneniya klimata. M.: Rosgidromet, 2008. 246 p.
  17. Connor B., Bösch H., McDuffie J., Taylor T., Fu D., Frankenberg C., ODell C., Payne V.H., Gunson M., Pollock R., et al. Quantification of uncertainties in OCO-2 measurements of XCO2: Simulations and linear error analysis // Atmos. Meas. Tech. 2016. V. 9. P. 5227–5238.
  18. Ehret G., Kiemle C., Wirth M., Amediek A. Space-borne remote sensing of CO2, CH4, and N2O by integrated path absorption lidar: A sensitivity analysis // J. Appl. Phys. 2008. V. 90. P. 593–608.
  19. Mao J., Ramanathan A., Abshire J.B., Kawa S.R., Riris H., Allan G.R., Rodriguez M., Hasselbrack W.E., Sun X., Numata K., et al. Measurement of atmospheric CO2 column concentrations to cloud tops with a pulsed multi-wavelength airborne lidar // Atmos. Meas. Tech. 2018. V. 11. P. 127–140.
  20. Han G., Ma X., Liang A., Zhang T., Zhao Y., Zhang M., Gong W. Performance Evaluation for China’s Planned CO2-IPDA // Remote Sens. 2017. V. 9. P. 768.
  21. Ehret G., Bousquet P., Pierangelo C., Alpers M., Millet B., Abshire J.B., Bovensmann H., Burrows J.P., Chevallier F., Ciais P., Crevoisier C., Fix A., Flamant P., Frankenberg Ch., Gibert F., Heim B., Heimann M., Houweling S., Hubberten H.W., Jöckel P., Law K., Löw A., Marshall J., Agusti-Panareda A., Payan S., Prigent C., Rairoux P., Sachs T., Scholze M., Wirth M. MERLIN: A French-German space lidar mission dedicated to atmospheric methane // Remote Sens. 2017. N 9. P. 1052–1081.
  22. Caron J., Durand Y., Bézy J.-L., Meynard R. Performance modelling for A-SCOPE // Proc. of SPIE. 2009. N 7479-13.
  23. Ingmann P. A-Scope. Esa Report: Advanced Space Carbon and Climate Observation of Planet Earth, Report for Assessment; SP-1313/1; ESA/ESTEC: Noordwijk. The Netherlands. 2009.
  24. Matvienko G.G., Sukhanov A.Y. Application of Neural Networks for Retrieval of the CO2 Concentration at Aerospace Sensing by IPDA-DIAL lidar // Remote Sens. 2019. V. 11. P. 659.
  25. Babchenko S.V., Matvienko G.G., Suhanov A.Ya. Otsenki vozmozhnostej zondirovaniya parnikovyh gazov CH4 i CO2 nad podstilayushchej poverhnost'yu IPDA lidarom kosmicheskogo bazirovaniya // Optika atmosf. i okeana. 2015. V. 28, N 1. P. 37–45.
  26. Suhanov A.Ya. Reshenie obratnoj zadachi DIAL-IPDA aerokosmicheskogo lidarnogo zondirovaniya uglekislogo gaza na osnove bionicheskih metodov // Optika atmosf. i okeana. 2017. V. 30, N 7. P. 589–597.
  27. Matvienko G.G., Krekov G.M., Sukhanov A.Ya. Space-borne remote sensing ofgreenhouse gases by IPDA lidar: A potentialities estimate // 25th Intern. Laser Radar Conf. St.-Petersburg, 2010. P. S11P-02.
  28. Matvienko G.G., Sukhanov A.Ya. Space-borne remote sensing of CO2 by IPDA lidar with heterodyne detection: Random error estimation // Proc. SPIE. 2015. V. 9680. CID: 9680 4I.
  29. Klett D. Stable analytical inversion solution for processing lidar returns // Appl. Opt. 1981. V. 20. P. 211–220.
  30. Fernald F.G. Analysis of atmospheric lidar observations: Some comments // Appl. Opt. 1984. V. 23. P. 652–653.
  31. Hayman M., Spuler S., Morley B. Polarization lidar observations of backscatter phase matrices from oriented ice crystals and rain // Opt. Express. 2014. V. 22, N 14. P. 16976–16990.
  32. Borovoi A., Konoshonkin A., Kustova N. Backscattering reciprocity for large particles // Opt. Lett. 2013. V. 38, N 9. P. 1485–1487.
  33. Borovoi A., Konoshonkin A., Kustova N. Backscatter ratios for arbitrary oriented hexagonal ice crystals of cirrus clouds // Opt. Lett. 2014. V. 39, N 19. P. 5788–5791.
  34. Borovoi A., Kustova N., Konoshonkin A. Interference phenomena at backscattering by ice crystals of cirrus clouds // Opt. Express. 2015. V. 23, N 19. P. 24557–24571.
  35. Konoshonkin A., Wang Z., Borovoi A., Kustova N., Liu D., Xie C. Backscatter by azimuthally oriented ice crystals of cirrus clouds // Opt. Express. 2016. V. 24, N 18. P. A1257–A1268.
  36. Konoshonkin A., Borovoi A., Kustova N., Reichardt J. Power laws for backscattering by ice crystals of cirrus clouds // Opt. Express. 2017. V. 25, N 19. P. 22341–22346.
  37. Wang Z., Borovoi A., Konoshonkin A., Kustova N., Liu D., Xie C. Extinction matrix for cirrus clouds in the visible and infrared regions // Opt. Lett. 2018. V. 43, N 15. P. 3578–3581.
  38. Ding J., Yang P., Holz R., Platnick S., Meyer K., Vaughan M., Hu Y., King M. Ice cloud backscatter study and comparison with CALIPSO and MODIS satellite data // Opt. Express. 2016. V. 24, N 1. P. 620–636.
  39. Woste L., Wedekind C., Wille H., Rairoux P., Stein B., Nikolov S., Werner Ch., Niedermeier S., Schillinger H., Sauerbrey R. Femtosecond atmospheric lamp // Laser und Optoelektronik. 1997. V. 29. P. 51–53.
  40. Rairoux P., Schillinger H., Niedermeier S. at el. Remote sensing of the atmosphere using ultrashort laser pulses // Appl. Phys. B71. 2000. P. 573–580.
  41. Wolf Jean-Pierre, Bourayou R., Boutou V., Favre C. at el. Teramobile: a Nonlinear Femtosecond Terawatt Lidar // Proc. ILRC 21, Quebec City, Canada. Part 1. 2002. P. 47–50.
  42. Faye G., Kasparian J., Sauerbrey R. Modifications to the lidar equation due to nonlinear propagation in air // Appl. Phys. 2001. B 73. P. 157–163.
  43. Apeksimov D.V. i dr. Femtosekundnaya atmosfernaya optika / pod obshch. red. S.N. Bagaeva, G.G. Matvienko. Novosibirsk: Izd-vo SO RAN, 2010. 238 p.
  44. Apeksimov D.V., Gejnts Yu.E., Zemlyanov A.A., Kabanov A.M., Matvienko G.G., Oshlakov V.K. Upravlenie oblast'yu mnozhestvennoj filamentatsii teravattnyh lazernyh impul'sov na stometrovoj vozdushnoj trasse // Kvant. elektron. 2015. P. 408–414 [Quantum Electron. 2015. P. 408–414].
  45. Apeksimov D.V., Zemlyanov A.A., Iglakova A.N., Kabanov A.M., Kuchinskaya O.I., Matvienko G.G., Oshlakov V.K., Petrov A.V. Global'naya samofokusirovka i osobennosti mnozhestvennoj filamentatsii izlucheniya subteravattnogo titan-sapfirovogo lazera s santimetrovym diametrom vyhodnoj apertury na 150-metrovoj trasse // Optika atmosf. i okeana. 2017. V. 30, N 9. P. 727–732.
  46. Apeksimov D.V., Zemlyanov A.A., Iglakova A.N., Kabanov A.M., Kuchinskaya O.I., Matvienko G.G., Oshlakov V.K., Petrov A.V., Sokolova E.B. Lokalizovannye svetovye struktury s vysokoj intensivnost'yu pri mnozhestvennoj filamentatsii femtosekundnogo impul'sa titan-sapfirovogo lazera na vozdushnoj trasse // Optika atmosf. i okeana. 2017. V. 30, N 11. P. 910–914.
  47. Matvienko G.G., Oshlakov V.K., Stepanov A.N., Suhanov A.Ya. Modelirovanie perenosa izlucheniya metodom Monte-Karlo i reshenie obratnoj zadachi na osnove geneticheskogo algoritma po rezul'tatam eksperimenta zondirovaniya aerozolej na korotkih trassah s ispol'zovaniem femtosekundnogo lazernogo istochnika // Kvant. elektron. 2015. P. 145–152 [Quantum Electron. 2015. P. 145–152].
  48. Galilejskij V.P., Grishin A.I., Kolevatov A.S., Morozov A.M., Oshlakov V.K., Petrov A.I. Istochnik nekogerentnogo shirokospektral'nogo impul'snogo opticheskogo izlucheniya dlya zondirovaniya troposfery // XVIII Rabochaya gruppa «Aerozoli Sibiri» 29 november – 2 december 2011 year, Tomsk.
  49. Galilejskij V.P., Kolevatov A.S., Morozov A.M. Istochnik nekogerentnogo impul'snogo opticheskogo izlucheniya dlya zondirovaniya troposfery // XIX Rabochaya gruppa «Aerozoli Sibiri» 27–30 november 2012 year, Tomsk.
  50. Oshlakov A.K. Oshlakov V.K. Galilejskij V.P., Kolevatov A.S. Morozov A.M. Opticheskij proboj vozduha izlucheniem shirokospektral'nogo istochnika sveta // Optika atmosf. i okeana. 1999. V. 12, N 5. P. 449–452.