Vol. 32, issue 02, article # 7

Еrmakov A. N., Aloyan A. E., Arutyunyan V. O. Air humidity effect on the formation of organic aerosol in the atmosphere. // Optika Atmosfery i Okeana. 2019. V. 32. No. 02. P. 141–146. DOI: 10.15372/AOO20190207 [in Russian].
Copy the reference to clipboard

Abstract:

Thermodynamic methods with the UNIFAC model have been used to study the distribution of hydrophobic and hydrophilic organic compounds in the atmosphere between the gas and aerosol phases. The results of calculations indicate that the formation of organic aerosol involving these multifunctional compounds is favored by their combined condensation with water vapor. Leading to the transfer of water molecules to the aerosol phase, the condensation is accompanied by an increased mass concentration of organic aerosol, which should be taken into account when comparing with field observation data.

Keywords:

atmosphere, condensation, activity coefficient, organic aerosol, thermodynamics

References:

    1.    Kanakidou M., Seinfeld J.H., Pandis S.N., Barnes I., Dentener F.J., Facchini M.C., van Dingenen R., Swietlicki E., Putaud J.P., Balkanski Y., Fuzzi S., Horth J., Moortgat G.K., Winterhalter R., Myhre C.E.L., Tsigaridis K., Vignati E., Stephanou E.G., Wilson J. Organic aerosol and global climate modeling: A review // Atmos. Chem. Phys. 2005. V. 5, N 4. P. 1053–1123.
   2. Stockwell W.R., Kirchner F., Kuhn M., Seinfeld S. A new mechanism for regional atmospheric chemistry modeling // J. Geophys. Res.: Atmos. 1997. V. 102. P. 25847–25879.
   3. Mao J., Carouge C., Evans M., Millet D., Palmer P. GEOS-Chem chemical mechanism, version 8.02.04. URL: http://acmg.seas.harvard.edu/geos/wiki_docs/chemistry/chemistry_updates_v6.pdf (last access: 4.11.2018).
   4. Aloyan A.E., Yermakov A.N., Arutyunyan V.O. Dynamics of gas admixtures and aerosols in forest and peat fires // Rus. J. Num. Anal. Math. Model. 2014. V. 29, N 2. P. 79–92.
   5. Dentener F.J., Carmichael G.R., Zhang Y., Lelieveld J., Crutzen P.J. Role of mineral aerosol as a reactive surface in the global troposphere // J. Geophys. Res.: Atmos. 1996. V. 101. P. 22869–22889.
   6. Hansen H.K., Rasmussen P., Fredenslund A., Schiller M., Gmehling J. Vapor-liquid equilibria by UNIFAC group-contribution. 5. Revision and Extension // Ind. Eng. Chem. Res. 1991. V. 30. P. 2352–2355.
   7. URL: http://www.aim.env.uea.ac.uk/aim/aim.php (last access: 4.11.2018).
   8. Amiro B., Todd J., Wotton B., Logan K., Flannigan M., Stocks B., Mason J., Martell D., Hirsch K. Direct carbon emissions from Canadian forest fires, 1959–1999 // Can. J. Forest Res. 2001. V. 31. P. 512–515.
   9. Pankow J.F. An absorption model of gas/particle partitioning of organic compounds in the atmosphere // Atmos. Environ. 1994. V. 28. P. 185–188.
10. Capouet M., Müller J.F. A group contribution method for estimating the vapour pressures of a-pinene oxidation products // Atmos. Chem. Phys. 2005. V. 5. P. 11249–11276.
11. Griffin R.J., Dabdub D., Seinfeld J.H. Development and initial evaluation of a dynamic species-resolved model for gas phase chemistry and size-resolved gas/particle partitioning associated with secondary organic aerosol formation // J. Geophys. Res. 2005. V. 110. P. D05304.