Vol. 32, issue 02, article # 6

Frolkis V. A., Kokorin A. M. Effect of the internal structure of particles on optical properties of stratospheric aerosol, its radiative forcing, and average global mean surface temperatur. // Optika Atmosfery i Okeana. 2019. V. 32. No. 02. P. 131–140. DOI: 10.15372/AOO20190206 [in Russian].
Copy the reference to clipboard

Abstract:

Single-phase and two-phase aerosol particles are considered. The influence of their structure and size distribution parameters on the optical characteristics of the stratospheric sulphate aerosol layer is simulated. The single-phase aerosol includes homogeneous particles, which are a liquid drop of 75% sulphuric acid, and the two-phase aerosol are drops of sulphuric acid with dissolved inorganic impurities. It is assumed that the latter can be two-layer, enlightened, and quasi-homogeneous. The dependence of instantaneous radiative forcing and radiative changes of surface temperature on the internal structure of stratospheric sulphate aerosol particles and the parameters of their size distribution is simulated. An aerosol layer with an optical thickness equal to 0.05 in the visible range is considered. Its particles can lead to the greenhouse and anti-greenhouse effects. Ensembles of two-layer particles with narrow size distributions, and ensembles with wider distributions and average radii not exceeding 0.25 ÷ 0.40 mm, create the anti-greenhouse effect on the order of 4 ÷ 8 W/m2, whereas for large average radii and wide distributions, occurring greenhouse effect (2 ÷6 W/m2) occurs.

Keywords:

stratospheric sulphate aerosol, two-layer, enlightened, quasi-homogeneous and homogeneous aerosol particles, optical property, instantaneous radiative forcing, greenhouse and anti-greenhouse effects, greenhouse gas compensation, geo-engineering

References:

    1.    IPCC: Climate Change 2013 – The Physical Science Basis. Cambridge University Press, 2014. 1552 p. URL: http://www.ipcc.ch/index.htm (last access: 9.12.18).
   2. Robock A. Volcanic eruption and climate // Rev. Geophys. 2000. V. 38, N 2. P. 191–219.
   3. Budyko M.I. Izmeneniya klimata. L.: Gidrometeoizdat, 1974. 280 p.
   4. Gray W.M., Frank W.M., Corrin M.L., Stokes C.A. Weather modification by carbon dust absorption of solar Energy // J. Appl. Meteorol. 1976. V. 15. P. 355–386.
   5. Budyko M.I., Golitsyn G.S., Izrael' Yu.A. Global'nye klimaticheskie katastrofy. M.: Gidrometeoizdat, 1986. 159 p.
   6. Kondrat'ev K.Ya. Radiatsionnoe vozmushchayushchee vozdejstvie, obuslovlennoe aerozolem // Optika atmosf. i okeana. 2003. V. 16, N 1. P. 5–18.
   7. Izrael' Yu.A. Effektivnyj put' sohraneniya klimata na sovremennom urovne – osnovnaya tsel' resheniya klimaticheskoj problemy // Meteorol. i gidrol. 2005. N 10. P. 5–9.
   8. Kondrat'ev K.Ya. Aerozol' i klimat: sovremennoe sostoyanie i perspektivy razrabotok. Aerozol'noe radiatsionnoe vozmushchayushchee vozdejstvie // Optika atmosf. i okeana. 2006. V. 19, N 7. P. 565–575.
   9. Macro-engineering. A challenge for the future / V. Badescu, R.B. Cathcart, R.D. Schuiling (eds.) // Water science and technology library. Dordrecht: Springer, 2006. V. 54. 318 p.
10. Vozmozhnosti predotvrashcheniya izmeneniya klimata i ego negativnyh posledstvij.  Problema Kiotskogo protokola: materialy Soveta-seminara pri Prezidente Rossijskoj akademii nauk / red.-sost. N.M. Shusharina. M.: Nauka, 2006. 407 p.
11. Izrael' Yu.A., Borzenkova I.I., Severov D.A. Rol' stratosfernyh aerozolej v sohranenii sovremennogo klimata // Meteorol. i gidrol. 2007. N 1. P. 5–14.
12. Rasch P.J., Crutzen P.J., Coleman D.B. Exploring the geoengineering of climate using stratospheric sulfate aerosols: The role of particle size // Geophys. Res. Lett. 2008. V. 35. L02809.
13. Krekov G.M., Rahimov P.O. Optiko-lokatsionnaya model' kontinental'nogo aerozolya. Novosibirsk: Nauka, Sib. otd., 1982. 192 p.
14. Prishivalko A.P., Babenko V.A., Kuz'min V.N. Rasseyanie i pogloshchenie sveta neodnorodnymi i anizotropnymi sfericheskimi chastitsami. Minsk: Nauka i tekhnika, 1984. 263 p.
15. Ivlev L.C. Struktura aerozolej v stratosfere // Parametrizatsiya nekotoryh vidov neprednamerennogo i napravlennogo vozdejstvij na atmosferu. L.: Izd-vo LGU, 1984. Iss. 84. P. 74–89.
16. Vasil'ev A.V., Ivlev L.S. Empiricheskie modeli i opticheskie harakteristiki aerozol'nyh ansamblej dvuhslojnyh sfericheskih chastits // Optika atmosf. i okeana. 1997. V. 10, N 8. P. 856–865.
17. Ivlev L.S., Korostina O.M. Raschety opticheskih harakteristik stratosfernyh aerozol'nyh chastits dvuhslojnoj struktury // Izv. RAN. 1994. Fiz. atmosf. i okeana. V. 30, N 6. P. 802–806.
18. Ivlev L.S., Dovgalyuk Yu.A. Fizika atmosfernyh aerozol'nyh sistem. SPb.: NIIH SpbGU, 1999. 194 p.
19. Kokorin A.M., Shifrin K.S. Vliyanie vlazhnosti na harakteristiki rasseyaniya sveta radial'no-neodnorodnyh chastits aerozolya v pogranichnom sloe nad morem // Opt. zhurn. 2000. V. 67, N 1. P. 26–31.
20. Karol' I.L., Frol'kis V.A. Energobalansovaya radiatsionno-konvektivnaya model' global'nogo klimata // Meteorol. i gidrol. 1984. N 8. P. 59–68.
21. Aloyan A.E., Ermakov A.N., Arutyunyan V.O. Aerozol' v verhnej troposfere i nizhnej stratosfere. Sul'fatnye chastitsy v severnyh shirotah // Optika atmosf. i okeana. 2018. V. 31, N 2. P. 136–142.
22. Aloyan A.E. Modelirovanie dinamiki i kinetiki gazovyh primesej i aerozolej v atmosfere: M.: Nauka, 2008. 415 p.
23. A preliminary cloudless standard atmosphere for radiation computation. WCP-112. WMO/TD. № 24. 1986. 53 p.
24. Zuev V.E., Kabanov M.V. Sovremennye problemy atmosfernoj optiki. V. 4. Optika atmosfernogo aerozolya. L.: Gidrometeoizdat, 1987. 254 p.
25. Kokorin A.M. Vliyanie vlazhnosti na harakteristiki rasseyaniya i pogloshcheniya sveta radial'no-neodnorodnyh chastits aerozolya v pogranichnom sloe nad morem // Opt. zhurn. 2012. V. 79, N 12. P. 3–12.
26. Maarov M.Ya., Shariv V.P., Lomakinav L.D. Opticheskie harakteristiki model'nyh aerozolej atmosfery Zemli. M.: In-t prikl. matem. im. M.V. Keldysha AN SSSR, 1989. 229 p.
27. Stenchikov G.L. Kirchner I., Robock A., Graf H.-F., Antuna J.C., Gringer R.G., Lambert A., Thomason L. Radiative forcing from the 1991 Mount Pinatubo volcanic eruption // J. Geophys. Res. D. 1998. V. 103, N 12. P. 13837–13857.
28. Boren K., Hafmen D. Pogloshchenie i rasseyanie sveta malymi chastitsami. M.: Mir, 1986. 660 p.
29. Frolkis V.A., Rozanov E.V. Radiation code for climate and general circulation models // IRS'92 Current problems in Atmospheric Radiation / S. Keevallik. Deepak Publ. Hampton, USA, 1993. P. 176–179.
30. Frol'kis V.A., Karol' I.L. Modelirovanie vliyaniya parametrov stratosfernogo aerozol'nogo ekrana na effektivnost' kompensatsii parnikovogo potepleniya global'nogo klimata // Optika atmosf. i okeana. 2010. V. 23, N 8. P. 710–722; Frolkis V.А., Kаrоl’ I.L. Simulation of the effect of stratospheric aerosol dimming parameters on the efficiency of offsetting global greenhouse climate warming // Atmos. Ocean. Opt. 2011. V. 24, N 1. P. 74–87.